Photocatalytic Degradation of Ethylene Bis-Dithiocarbamate Fungicide from Wastewater Using Cerium Oxide Nanoparticles under Natural Solar Irradiation

Main Article Content

Mahadi Danjuma
https://orcid.org/0000-0002-7230-0358
Dr. Abbaraju V.D.N. Kumar
https://orcid.org/0000-0001-5735-5310
Venugopal V.S. Nutulapati
https://orcid.org/0000-0003-0552-1377

Abstract

This study developed a suitable method for the degradation of ethylene bis-dithiocarbamate pesticide mancozeb in wastewater and agricultural runoff using nanoceria as photocatalysts. The nanoceria or cerium oxide nanoparticles were synthesized using a simple coprecipitation method with cerium nitrate hexahydrate (Ce (NO3)3. 6H2O) and Potassium carbonate (K2CO3) as a precursor and precipitating agent respectively. The synthesized powder particle was further ascertained through characterization using Scanning Electron Microscopy SEM for surface morphology, Fourier Transform Infrared Spectroscopy FTIR for the determination of the functional groups, Powder X-ray diffraction PXRD for crystal structure, phase and crystallite size and Energy Dispersive X-ray Spectroscopy EDAX for elemental composition of the synthesized nanoceria. It was revealed that the nanoparticle was successfully synthesized with a crystallite size of 27 nm. Photocatalytic degradation of mancozeb pesticide using the synthesized NPs was determined in batches with optimization of certain parameters including; the initial concentration of pesticide, quantity of the photocatalyst, irradiation time, calcination temperature and UV index. Nanoceria was found to degrade more than 62% of the initial concentration of mancozeb in 2 hours. Nanoceria usually acts as an active sorbent in the destruction of pesticides in wastewater and as such, its application on the degradation of mancozeb is crucial and significant. This method can be suitable for agricultural runoff and synthetic chemical pesticides effluent with proper optimisation.

Downloads

Download data is not yet available.

Article Details

How to Cite
Danjuma, M., Abbaraju V.D.N. Kumar, D., & Nutulapati, V. V. (2024). Photocatalytic Degradation of Ethylene Bis-Dithiocarbamate Fungicide from Wastewater Using Cerium Oxide Nanoparticles under Natural Solar Irradiation. Malaysian Journal of Science, 43(4), 20–30. https://doi.org/10.22452/mjs.vol43no4.3
Section
Original Articles
Author Biography

Venugopal V.S. Nutulapati, GITAM University

Professor, Department of Chemistry, GITAM University

References

Bao, J., Zhang, Y., Wen, R., Zhang, L., & Wang, X. (2022). Low level of mancozeb exposure affects ovary in mice. Ecotoxicology and Environmental Safety, 239, 113670. https://doi.org/10.1016/J.ECOENV.2022.113670

Bonvoisin, T., Utyasheva, L., Knipe, D., Gunnell, D., & Eddleston, M. (2020). Suicide by pesticide poisoning in India : a review of pesticide regulations and their impact on suicide trends. 1–16.

Chang, G. R. (2018). Persistent organochlorine pesticides in aquatic environments and fishes in Taiwan and their risk assessment. Environmental Science and Pollution Research, 25(8), 7699–7708. https://doi.org/10.1007/S11356-017-1110-Z/TABLES/3

Ederer, J., Sˇtastn, M., DošekDošek, M., Henych ab, J., & JanošJanoš, P. (2019). Mesoporous cerium oxide for fast degradation of aryl organophosphate flame retardant triphenyl phosphate. https://doi.org/10.1039/c9ra06575j

Eka Putri, G., Rilda, Y., Syukri, S., Labanni, A., & Arief, S. (2021). Highly antimicrobial activity of cerium oxide nanoparticles synthesized using Moringa oleifera leaf extract by a rapid green precipitation method. Journal of Materials Research and Technology, 15, 2355–2364. https://doi.org/10.1016/J.JMRT.2021.09.075

El-Alfy, M. A., Hasballah, A. F., Abd El-Hamid, H. T., & El-Zeiny, A. M. (2019). Toxicity assessment of heavy metals and organochlorine pesticides in freshwater and marine environments, Rosetta area, Egypt using multiple approaches. Sustainable Environment Research, 29(1), 1–12. https://doi.org/10.1186/S42834-019-0020-9/TABLES/6

El Desouky, F. G., Saadeldin, M. M., & El Zawawi, I. K. (2022). Synthesis and tuning the structure, morphological, optical, and photoluminescence properties of heterostructure cerium oxide and tin oxide nanocomposites. Journal of Luminescence, 241, 118450. https://doi.org/10.1016/J.JLUMIN.2021.118450

Farahmandjou, M., Farahmandjou, M., Zarinkamar, M., & Firoozabadi, T. P. (2016). Synthesis of Cerium Oxide (CeO2) nanoparticles using simple CO-precipitation method Article in Revista Mexicana de Fisica • Synthesis of Cerium Oxide (CeO 2 ) nanoparticles using simple CO-precipitation method. Revista Mexicana de Física, 62(October), 496–499. https://www.researchgate.net/publication/308742876

Janoš, P., Ederer, J., Štastný, M., Tolasz, J., & Henych, J. (2022). Degradation of parathion methyl by reactive sorption on the cerium oxide surface: The effect of solvent on the degradation efficiency. Arabian Journal of Chemistry, 15(6). https://doi.org/10.1016/j.arabjc.2022.103852

Janos, P., Kuran, P., Kormunda, M., Stengl, V., Grygar, T. M., Dosek, M., Stastny, M., Ederer, J., Pilarova, V., & Vrtoch, L. (2014). Cerium dioxide as a new reactive sorbent for fast degradation of parathion methyl and some other organophosphates. Journal of Rare Earths, 32(4), 360–370. https://doi.org/10.1016/S1002-0721(14)60079-X

Kashyap, K., Khan, F., Verma, D. K., & Agrawal, S. (2022). Effective removal of uranium from aqueous solution by using cerium oxide nanoparticles derived from citrus limon peel extract. Journal of Radioanalytical and Nuclear Chemistry, 1–11. https://doi.org/10.1007/S10967-021-08138-4/TABLES/3

Keerthana, M., Malini, T. P., & Sangavi, R. (2021). Efficiency of cerium oxide (CeO2) nano-catalyst in degrading the toxic and persistent 4-nitrophenol in aqueous solution. Materials Today: Proceedings, 50, 375–379. https://doi.org/10.1016/j.matpr.2021.10.082

Keerthana, M., Malini, T. P., & Sangavi, R. (2022). Efficiency of cerium oxide (CeO2) nano-catalyst in degrading the toxic and persistent 4-nitrophenol in aqueous solution. Materials Today: Proceedings, 50, 375–379. https://doi.org/10.1016/J.MATPR.2021.10.082

Kim, K., Kabir, E., & Ara, S. (2016). Science of the Total Environment Exposure to pesticides and the associated human health effects. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2016.09.009

Kumaraguru, S., Nivetha, R., Gopinath, K., Sundaravadivel, E., Almutairi, B. O., Almutairi, M. H., Mahboob, S., Kavipriya, M. R., Nicoletti, M., & Govindarajan, M. (2022). Synthesis of Cu-MOF/CeO2 nanocomposite and their evaluation of hydrogen production and cytotoxic activity. Journal of Materials Research and Technology, 18, 1732–1745. https://doi.org/10.1016/J.JMRT.2022.03.028

Lin, Y. H., Shen, L. J., Chou, T. H., & Shih, Y. hsin. (2021). Synthesis, Stability, and Cytotoxicity of Novel Cerium Oxide Nanoparticles for Biomedical Applications. Journal of Cluster Science, 32(2), 405–413. https://doi.org/10.1007/S10876-020-01798-4/FIGURES/6

Mandić-Rajčević, S., Rubino, F. M., & Colosio, C. (2020). Establishing health-based biological exposure limits for pesticides: A proof of principle study using mancozeb. Regulatory Toxicology and Pharmacology, 115, 104689. https://doi.org/10.1016/J.YRTPH.2020.104689

Miri, A., Beiki, H., Najafidoust, A., Khatami, M., & Sarani, M. (2021). Cerium oxide nanoparticles: green synthesis using Banana peel, cytotoxic effect, UV protection and their photocatalytic activity. Bioprocess and Biosystems Engineering, 44(9), 1891–1899. https://doi.org/10.1007/S00449-021-02569-9/FIGURES/10

Miri, A., Sarani, M., & Khatami, M. (2020). Nickel-doped cerium oxide nanoparticles: biosynthesis, cytotoxicity and UV protection studies. https://doi.org/10.1039/c9ra09076b

Mohamed, H. R. H. (2021). Acute Oral Administration of Cerium Oxide Nanoparticles Suppresses Lead Acetate–Induced Genotoxicity, Inflammation, and ROS Generation in Mice Renal and Cardiac Tissues. Biological Trace Element Research, 200(7), 3284–3293. https://doi.org/10.1007/S12011-021-02914-9/FIGURES/7

Morales-Ovalles, Y., Miranda-Contreras, L., Peña-Contreras, Z., Dávila-Vera, D., Balza-Quintero, A., Sánchez-Gil, B., & Mendoza-Briceño, R. V. (2018). Developmental exposure to mancozeb induced neurochemical and morphological alterations in adult male mouse hypothalamus. Environmental Toxicology and Pharmacology, 64, 139–146. https://doi.org/10.1016/J.ETAP.2018.10.004

Muduli, S., & Ranjan Sahoo, T. (2022). Green synthesis of cerium oxide, Co-doped cerium oxide nanoparticles and its dielectric properties. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2022.07.308

Muthuvel, A., Jothibas, M., Mohana, V., & Manoharan, C. (2020). Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity. Inorganic Chemistry Communications, 119, 108086. https://doi.org/10.1016/J.INOCHE.2020.108086

Nicolopoulou-Stamati, P., & , Sotirios Maipas, Chrysanthi Kotampasi, P. S. and L. H. (2016). Chemical Pesticides and Human Health : The Urgent Need for a New Concept in Agriculture. 4(July), 1–8. https://doi.org/10.3389/fpubh.2016.00148

Pradeepa, E., & Nayaka, Y. A. (2022). Cerium oxide nanoparticles via gel-combustion for electrochemical investigation of pantoprazole in the presence of epinephrine. Journal of Materials Science: Materials in Electronics, 33(23), 18374–18388. https://doi.org/10.1007/S10854-022-08692-X/TABLES/2

Quds, R., Amiruddin Hashmi, M., Iqbal, Z., & Mahmood, R. (2022). Interaction of mancozeb with human hemoglobin: Spectroscopic, molecular docking and molecular dynamic simulation studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 280, 121503. https://doi.org/10.1016/J.SAA.2022.121503

Raees, A., Jamal, M. A., Ahmad, A., Ahmad, I., Saeed, M., Habila, M. A., AlMasoud, N., & Alomar, T. S. (2022). Synthesis and characterization of Ceria incorporated Nickel oxide nanocomposite for promising degradation of methylene blue via photocatalysis. International Journal of Environmental Science and Technology, 19(7), 6445–6452. https://doi.org/10.1007/S13762-021-03584-9/FIGURES/6

Samai, B., & Bhattacharya, S. C. (2018). Conducting polymer supported cerium oxide nanoparticle: Enhanced photocatalytic activity for waste water treatment. Materials Chemistry and Physics, 220, 171–181. https://doi.org/10.1016/J.MATCHEMPHYS.2018.08.050

Saraiva, M. A., de Carvalho, N. R., Martins, I. K., Macedo, G. E., Rodrigues, N. R., de Brum Vieira, P., Prigol, M., Gomes, K. K., Ziech, C. C., Franco, J. L., & Posser, T. (2021). Mancozeb impairs mitochondrial and bioenergetic activity in Drosophila melanogaster. Heliyon, 7(1), e06007. https://doi.org/10.1016/J.HELIYON.2021.E06007

Shetty, A. N., Kaveri, •, Kiran, •, Desai, K., Somanathreddy, •, & Patil, C. (2022). Green Combustion Synthesis of CeO2 Nanostructure Using Aloe vera (L.) Burm f. Leaf Gel and Their Structural, Optical and Antimicrobial Applications. BioNanoScience 2022, 1, 1–9. https://doi.org/10.1007/S12668-022-01001-0

Singh, P., Mohan, B., Madaan, V., Ranga, R., Kumari, P., Kumar, S., Bhankar, V., Kumar, P., & Kumar, K. (2022). Nanomaterials photocatalytic activities for waste water treatment: a review. Environmental Science and Pollution Research 2022 29:46, 29(46), 69294–69326. https://doi.org/10.1007/S11356-022-22550-7

Vijgen, J., Weber, R., Lichtensteiger, W., & Schlumpf, M. (2018). The legacy of pesticides and POPs stockpiles—a threat to health and the environment. Environmental Science and Pollution Research 2018 25:32, 25(32), 31793–31798. https://doi.org/10.1007/S11356-018-3188-3

Walker, E. K., Brock, G. N., Arvidson, R. S., & Johnson, R. M. (2022). Acute Toxicity of Fungicide–Insecticide–Adjuvant Combinations Applied to Almonds During Bloom on Adult Honey Bees. Environmental Toxicology and Chemistry, 41(4), 1042–1053. https://doi.org/10.1002/ETC.5297

Zhao, G. P., Yang, F. W., Li, J. W., Xing, H. Z., Ren, F. Z., Pang, G. F., & Li, Y. X. (2020). Toxicities of Neonicotinoid-Containing Pesticide Mixtures on Nontarget Organisms. Environmental Toxicology and Chemistry, 39(10), 1884–1893. https://doi.org/10.1002/ETC.4842