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ABSTRACT 

In this paper, we present a new parallel granularity called “tiling” to parallelize the H.264 codec. The new parallel 

granularity, which has the same granularity level as the parallel slice-level H.264 codec, is based on decomposing the 

entire video frame into tiles by utilizing a new inherently parallel 2D domain decomposition method. To assess the 

proposed approach, its parallel scalability, bit rate, and parallel impact on visual quality (peak signal-to-noise ratio) 

are compared with those of other approaches. Empirical results show significant improvements in encoding time as 

compared to the serial and the parallel slice-level approaches. In terms of peak signal-to-noise ratio and bit rate, 

certain results improved, a few were comparable, while a few were discouraging, when compared to the results of the 

other approaches. However, addressing the limitations of the proposed method is highlighted as future work. 

 

Keywords: Video bit rate, video compression efficiency, speed-up, OpenMP, 2D domain decomposition method, 

parallel scalability, parallel impact. 

 

1.0 INTRODUCTION 

The digital revolution has made the use of multimedia applications widely spread. New multimedia services are 

continuously being introduced by the industry. This phenomenon is strongly related to the rapid development of 

hardware and software for computing devices, such as servers, laptops, and smart phones. 

 

In terms of online multimedia, services must be capable to facilitate the exchange of multimedia contents within an 

expected period of time. Thus, the efficiency of compression techniques is important to deliver these online multimedia 

services over the Internet. For example, among several video compression techniques that have been introduced, some 

have become an industry standard. H.264 is one of the most popular international standards for video compression. It is 

commonly used as video codec for high-definition (HD) videos [1]. H.264 is a hybrid block-based video codec that 

involves prediction, transformation and quantization, filtering, and entropy coding [2]. It outperforms previous video 

coding standards in terms of compression efficiency. However, this improved compression efficiency comes at the 

expense of complexity [3, 4]. This complexity is mainly attributed to the introduction of new coding features, such as 

variable block size, multiple reference frames, and quarter-pixel accuracy. Technically, a H.264 encoder requires 

computations that are more than one order of magnitude when compared to previous video coding standards such as 

H.263, MPEG-2, and MPEG-4 Part 2. Moreover, it requires approximately two to four times of additional computations 

in the decoder side compared to these previous video coding standards [5, 6]. 

 

When H.264 was designed, there was no explicit consideration of the revolution in parallel hardware architectures. 

Fortunately, the upcoming High Efficiency Video Coding (HEVC) [7] standard has addressed this limitation by its 
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obvious support of parallelization [8]. However, addressing such a limitation in a new video coding standard cannot be 

directly backward-compatible with earlier video coding standards, i.e., H.264, due to the scope of standard. Moreover, in 

several scenarios, shifting to a newer video coding method may not be feasible for many organizations. This 

unfeasibility is clearly the reason for the use of several video transcoders [9-11] among video coding systems, such as 

H.264 and earlier video coding standards. In addition, it motivates researchers to optimize current video coding systems 

(such as the one in this paper). 

 

Numerous studies, such as [12-16] and others have strived to address the complexity bottleneck of the H.264 encoder. In 

general, the directions of these works [12-16] can be classified into few categories. The first category overcomes the 

complexity by utilizing special hardware as accelerator. The application specific integrated circuit (ASIC) and field 

programmable gate array (FPGA) are examples of accelerators in this hardware-oriented category. Hardware-oriented 

methods have shown good performance efficiency. However, their limitation is the difficulty in reconfiguration when 

compared to the software-oriented approach, which is the second category. In the software-oriented category, the high 

complexity of H.264 is made more algorithmically digestible on general-purpose processing elements. The second 

category can be further splitted into two approaches: complexity reduction and parallel computing. In H.264, a 

complexity reduction algorithm is used by removing some of the coding features of H.264, which are subjectively 

deemed as redundant [17]. On the other hand, the parallel computing approach is applied on H.264 using the data-level 

approach, the task-level approach, or a combination of the two. The parallel computing approach has been addressed in a 

remarkable number of studies because of the ongoing widespread use and affordability of parallel hardware, such as 

multicore and x. 

 

In some scenarios, both complexity reduction and parallel computing approaches may compromise the visual quality or 

bit rate of the encoded video. For example, in terms of complexity reduction, the early termination or skipping of any of 

the search-based steps of H.264 encoding, such as inter-prediction, intra-prediction, and motion compensation, will 

likely result in visual quality degradation. However, complexity reduction-based solutions are additionally susceptible to 

an increase in bit rate. On the other hand, as will be detailed later, leveraging parallel computing in video encoding 

would also have, in some cases, affected the video quality and bit rate. Nevertheless, parallelizing H.264 video coding as 

an approach is forming the vast majority of studies classified under the software-oriented approach when compared to 

the complexity reduction approach. This preference alludes to the better practicality of parallel computing solutions over 

the complexity reduction solution in the H.264 codec. 

 

In this paper, we employ parallel computing to design a new parallel-friendly H.264 video encoder. The major concept 

behind this work differs from other parallel studies in that it introduces a new parallel granularity for the H.264 encoder 

called “tiling,” which offers improved or comparable outcomes in terms of speedup, video quality, and bit rate as 

compared to other parallel approaches. The remainder of this paper includes a review of the literature, an illustration of 

the quality-aware parallel H.264 encoder, a detailed description of our experimental results, discussion, and a 

conclusion. 

 

 

2.0 BACKGROUND AND RELATED WORKS  

Parallel computing has enabled the wide adoption of H.264 [18]. Since its inception, several parallel-based attempts 

have been introduced to make the H.264 encoder parallel-friendly, thereby rendering H.264 video encoding more 

applicable to specific situations. As mentioned in Section 1, the employment of parallelization in H.264 encoding has 

exhibited different directions. These parallel directions can be categorized according to the flavors of the parallel 

computing itself. Based on the type of parallelism, parallelizing the H.264 encoder can be achieved by using the data-

level or task-level approach. The task-level approach involves two or more independent tasks running concurrently on 

different processing elements, while the data-level approach divides the overall data size into smaller pieces for 

simultaneous processing. 
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As indicated in ample previous literature, such as [3, 19], parallelizing the H.264 codec using the data-level approach 

has shown better outcomes in terms of speed-up when comparing to the task-level counterpart. This is because of the 

inherent dependency and unequal workloads of the encoding stages, which limit parallel scalability and efficiency when 

the task-level approach is employed. Hence, parallelizing the H.264 encoder using the data-level approach is the main 

focus of this section. 

 

2.1. Overview of H.264 Encoder Parallel Granularities  

Parallelizing the H.264 encoder based on the data-level approach is integrally featured in different types based on the 

relative size of the parallel unit (see Fig. 1). Different possible granularities that can be chosen to parallelize the H.264 

encoder include, from largest to smallest, group-of-pictures (GOP), short GOP-level, frame-level, slice-level, 

macroblock (MB)-level, short MB-level, and block-level. 

 

 
 

Fig. 1. Data levels parallelism of H.264 codec [12]. 

 

GOPs are a coding-independent unit. Therefore, the GOP level is easy to implement; however, it has long latency [20] 

and large memory requirements [3]. Thus, parallelizing the GOP level is inappropriate for shared memory architecture 

because of limited on-chip memory [21]. Frame-level coding does not increase bit rate. However, complex 

interdependencies, which are caused by very flexible usage of reference pictures, limit its parallel scalability [12, 22, 

23]. Moreover, this level of coding is associated with large memory requirements. Slice-level coding has been associated 

with minimal synchronization cost, normal memory requirements, and good scalability performance [3]. The only 

drawbacks of slice-level coding are the bit rate increment and visual quality degradation when the number of slices 

increases [12]. MB-level and block-level coding incur no bit rate decrement; nevertheless, both are associated with high 

synchronization costs because of the small-sized parallel unit, dependency among them [24], and poor scalability [3], 

which render their incompatibility with the current trend of multicore. 

  

Given this background, parallel granularity in video coding could potentially reflect the performance of a parallel system 

in terms of scalability, synchronization cost, and memory requirement. In terms of parallel H.264, slice-level is a trade-

off method among all the considered performance metric. Moreover, it is the most universal parallelization method 

employed to parallelize the H.264 codec [24]. 
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2.2. Related Works 

Researchers have proposed several parallel-based H.264 encoders, such as the hierarchical parallelization approach for 

the H.264 encoder introduced in [25]. The hierarchical approach suggests that GOP-level parallelism and slice-level 

parallelism can be combined to overcome the latency problem of using only GOP-level parallelism. Using the Message 

Passing Interface (MPI) and multi-threaded parallelism, the work presented in this paper parallelizes the H.264 encoder 

on a cluster machine. Synchronization is the main problem that produces the loss in the encoding speed-up. We believe 

this problem is caused by the double layer of parallelism, which introduces several points of barriers. 

 

Moreover, a frame-level parallelism for the H.264 encoder was proposed in [26]. The frame-parallel encoding scheme is 

based on encoding picture frames that share no data dependency. Up to only three concurrent encoding frames could be 

reached because of the dependency among frames. Although a reduction of 66% in system bandwidth was reported, no 

time measurements were shown. 

 

An adaptive slice control scheme was proposed in [24] to parallelize the H.264 encoder. The encoder decides the 

number of slices before encoding each time segment on a per-frame basis. Using a four-core machine, a speed-up of 

3.03 times encoding speed was achieved over the serial implementation. However, the proposed solution is workable 

when the encoding complexity over some parts of the frame (motion) is significantly different from other parts (low 

motion). When each frame shows normality in the complexity of encoding among slices, the solution will show no 

speed-up gain, and the proposed solution will cause extra overhead in deciding the number of slices, which leads to extra 

encoding time. 

 

At the parallel unit level, a parallel algorithms based on Intel Hyper-Threading architecture for H.264 encoder was 

proposed [12]. The concept involves splitting a frame into several slices, which are processed by multiple threads. The 

resulting speed-ups are ranged from 3.1 to 3.7 times on a system with four Intel Xeon processors and Hyper-Threading 

disabled. 

  

Zhuo and Ping proposed a parallel algorithm with a wavefront-based technique relied on the analysis of data 

dependencies in the H.264 baseline encoder [13]. Data were mapped onto different processors at the granularity of 

frames or MB rows, and the final speed-ups were up to 3.17 times on a software simulator with four processors. This 

method of data partitioning with the wavefront-based technique avoids decrement on the compression ratio by splitting 

frames into slices. However, in the motion estimation of the H.264 encoder, the search center is the predicted motion 

vector (PMV). This leads to the data dependencies introduced by ME, which are not confined by the search range 

However, their analysis is unsatisfactory because this method confines the search center at the position of (0, 0). 

 

At a finer level, a MB region partitioning technique was proposed [27] to explore parallelization at the MB level. A one-

dimensional (i.e., vertical) partitioning is submitted to the frame, and it maps each partition to different processors. 

Then, a wavefront-based technique is adopted. However, to avoid data dependency, processors start to encode data one 

by one after a short time. The process takes place during the time in which a processor encodes a row of MBs in an MB 

region and transfers required reconstructed data to the next adjoining processor, which will propagate synchronization 

overhead. This synchronization will become a crucial issue if the workload of each MB region is significantly unequal. 

Simulation results of four processors showed a speed-up up to 3.33 times when compared to the sequential reference 

encoder JM 10.2 by using a CIF (352 × 288) video sequence. Finally, using data-parallel hardware, such as GPUs, 

several works have ported parts of the encoding/decoding stages of H.264 to be processed by a GPU. Motion estimation 

(ME) is the main part that is ported to the GPU. Hence, GPUs are used as accelerators. In [28], a contiguous diagonal 

parallelization was proposed by changing the data dependency at the MB level to increase the level of parallelism. By 

using the Compute Unified Device Architecture (CUDA), real-time encoding was achieved with an 8.2% increment in 

bit rate when comparing to the reference encoder JM 16.0. 
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The observations reported by each work, regardless of its outcomes and based on its chosen granularity, has been 

designed to suit a particular case. The capacity of the target hardware and other factors affects the selection of the 

parallel granularity. As a conclusion, no solution could prove that it outperforms other solutions due to the utilization of 

different performance metrics.Moreover, in terms of parallelizing the H.264 encoder, synchronization has been the main 

performance bottleneck; avoiding the synchronization by design, will significantly increase the performance of the 

parallelizing H.264 encoder. Finally, in all works, the parallel granularities that are used are the defined syntax elements 

in H.264 terminology. However, the manner in which these elements are processed in parallel varies among the studies. 

 

 

3.0 PARALLEL TILING ALGORITHM 

The idea of this algorithm is to decompose a two-dimensional space (such as 2D arrays) into rectangular shapes called 

tiles. Each of these tiles can be simultaneously processed in parallel. Tiling is not a new term in parallel computing [29, 

30], but the way it has been  designed in this work, which represents its novelty and simplicity, differentiates it from 

previous works. In fact, the differentiation is achieved by considering the parallel software applicalabilities during the 

design phase of the algorithm and not as a post stage which is a common trend in most of the algorithms. In this section, 

the proposed parallel tiling algorithm is detailed. 

  

3.1. Determining Tile Size 

First, the parallel tiling algorithm starts by acquiring the number of tiles (n) that requires to be disintegrated from a two-

dimensional space (p × q). Generally, the number of tiles depends on the number of threads in a parallel system. The 

horizontal dimension is denoted by p, and q refers to the vertical dimension. Once the number of tiles is obtained, this 

number is employed as input for a prime factorization algorithm as a second step. The second step outputs the factors of 

n. The generated factors are used as dominators to the horizontal and vertical dimensions of the space (p × q) to 

determine the horizontal and vertical dimensions of the tile (Tp × Tq). 

 

There are three scenarios for the generated factors: the number of factors is equal to two, the number of factors is more 

than two, or the number of factor is one (the number of tiles is prime). When the number of factors is more than two, a 

proposed factor reduction step is employed to reduce the number of factors to two, thereby ensuring the desired number 

of tiles. This step is achieved by multiplying the extra factors to reduce them to two. 

 

Several possible results can be obtained. However, the best case is when the summation of the two factors is the smallest 

among other possible cases. Adding such a criterion ensures less length of the total tile boundaries. Moreover, when the 

number of reduced factors are exactly two, no factor reduction step is required; the factors will be directly used as 

dominators to determine the horizontal and vertical dimensions of the tile (Tp × Tq). Finally, when the number of 

reduced factors is one (the number of tiles is prime), this factor (prime number) will then be used as a dominator for one 

of the dimensions of the space (particularly the horizontal dimension), and the second dominator will be set to one. In 

the third scenario, the parallel domain decomposition will turn into one-dimensional parallel domain decomposition 

rather than two-dimensional domain decomposition. 

 

Once the two final factors are obtained, the horizontal and vertical dimensions of the tile (Tp × Tq) are now ready to be 

determined by using integer division to divide the horizontal and vertical dimensions of the original space to these 

factors. For example, in the standard video dimension, a HD video 720p (1280 x 720), has 1280 horizontal number of 

pixels and 720 vertical number of pixels. By reviewing the dimensions of standard video sizes, it is concluded that the 

horizontal number of pixels is always more that of the vertical number of pixels. Therefore, to further reduce the total 

number of tile boundaries, if the values of the two dominators (two final factors) are dissimilar, larger value will be used 

to divide the horizontal dimension and the smaller number will be used to divide the vertical dimension. 
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Examples for 3, 4, 8, 16 tiles are demonstrated to determine the size of each tile (see Table 1). When the number of the 

tiles is 3, the prime factorization step will generate 3 (the number itself), because 3 is a prime number. The prime 

factorization step for 4 tiles will generate 2 and 2. Next, the prime factorization step will generate three factors, i.e., 2, 2, 

and 2 when considering 8 tiles as an input. Finally, 16 tiles will generate four factors, i.e., 2, 2, 2, and 2. No factor 

reduction is required for 3 and 4 tiles because the number of factors is either exactly two or less than two. On the other 

hand, a factor reduction step is employed for 8 tiles, for which the result is 2 and 4, where the 4 is calculated from 

multiplying 2 and 2. In the case of 16 tiles, two outputs can be generated from the factor reduction step: 2 and 8, and 4 

and 4. As previously mentioned, the best case here is 4 and 4 because the sum of these two numbers is eight, which is 

smaller than the sum of the other set of factors (i.e., the sum of the other set of factors, 2 and 8, is 10). The final desired 

dominators (two final factors) will be denoted by dp and dq, where dp ≥ dq is always true. Once dp and dq are determined, 

Tp and Tq will be equal to p / dp and q / dq, respectively. 

 

 
Table 1. Size of each tile for four different numbers of tiles in each scenario 

 

Size of the space 

(1280 × 720) 

p = 1280, q = 720 

Number of tiles 

3 (3 × 1) 

dp = 3, dq = 1 

4 (2 × 2) 

dp = 2, dq = 2 

8 (4 × 2) 

dp = 4, dq = 2 

16 (4 × 4) 

dp = 4, dq = 4 

Tp Tq Tp Tq Tp Tq Tp Tq 

426 720 320 360 320 360 320 360 

 

3.2. Parallel Processing of Tiles 

Once the size of each tile is determined, each tile is assigned to one thread for parallel processing. To dynamically 

achieve this assignment, a new mathematical formula is suggested in this paper. This formula is designed by using 

division ( / ) and modulus ( % ) operations to explicitly assign a single tile to an individual thread. Besides, the proposed 

mathematical formula requires to retrieve the ID of a thread in a parallel region. In fact, most, if not all, parallel libraries 

as well as parallel APIs have a built-in facility to retrieve the thread ID for each thread within a parallel region. Values 

of this variable start from zero to n-1 where n is the number of threads specified to solve a task in parallel. The following 

pseudo code illustrates the parallel tiling algorithm: 

 

Parallel Tiling Algorithm: 

read (n) 

/*Size of Tiles*/ 

factors[i] = prime_factorization(n) 

if (sizeof(factors[i] > 2)) 

{ 

reduced_factors[2] = factors_requction(factors) 

if (reduced_factors[0] ≥ reduced_factors[1]) 

   dp = reduced_factors[0]; 

   dq = reduced_factors[1];  

else 

   dp = reduced_factors[1]; 

   dq = reduced_factors[0]; 
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Tp = p / dp; 

Tq = q / dq; 

} 

else 

if (sizeof(factors[i] = 2)) 

{ 

if (factors[0] ≥ factors[1]) 

dp = factors[0]; 

dq = factors[1]; 

else 

dp = factors[1]; 

dq = factors[0]; 

Tp = p / dp; 

Tq = q / dq; 

} 

else 

if (sizeof(factors[i] = 1)) 

{ 

dp = factors[0]; 

dq = 1; 

Tp = p / dp; 

Tq = q / dq; 

 

} 

 

/* Parallel Processing*/ 

threadID = get_thread_ID( ); 

for (i = (threadID % dp) * Tp; i < ((threadID % dp) + 1) * Tp; i++) 

for (j = (threadID / dp) * Tq; j < ((threadID / dp) + 1) * Tq; j++) 

parallel_processing(space[p, q]); 

In the above pseudo code, threadID is an integer variable used to store the ID of each thread in a parallel region. 

 

As shown in the previous pseudo code, parallel processing is represented in the two “for” loops, where the proposed 

mathematical formula is embedded in the body of the “for” loop. Table 2 shows the range of allocation for each thread 

inspired from the data of Table 1. 
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Table 2. Tile range of each thread 

 

Number of Tiles = 3 

threadID Horizontal length Vertical length 

0 [0, 426] [0, 720] 

1 [426, 852] [0, 720] 

2 [852, 1278] [0, 720] 

Number of Tiles = 4 

threadID Horizontal length Vertical length 

0 [0, 640] [0, 360] 

1 [640, 1280] [0, 360] 

2 [0, 640] [360, 720] 

3 [640, 1280] [360, 720] 

Number of Tiles = 8 

threadID Horizontal length Vertical length 

0 [0, 320] [0, 360] 

1 [320, 640] [0, 360] 

2 [640, 960] [0, 360] 

3 [960, 1280] [0, 360] 

4 [0, 320] [360, 720] 

5 [320, 640] [360, 720] 

6 [640, 960] [360, 720] 

7 [960, 1280] [360, 720] 

Number of Tiles = 16 

threadID Horizontal length Vertical length 

0 [0, 320] [0, 180] 

1 [320, 640] [0, 180] 

2 [640, 960] [0, 180] 

3 [960, 1280] [0, 180] 

4 [0, 320] [180, 360] 

5 [320, 640] [180, 360] 

6 [640, 960] [180, 360] 

7 [960, 1280] [180, 360] 

8 [0, 320] [360, 540] 

9 [320, 640] [360, 540] 

10 [640, 960] [360, 540] 

11 [960, 1280] [360, 540] 

12 [0, 320] [540, 720] 

13 [320, 640] [540, 720] 

14 [640, 960] [540, 720] 

15 [960, 1280] [540, 720] 

 

As observed from Table 2, in some situations it is possible that parallel processing will not cover the entire two-

dimensional space. To avoid such a defect, some tiles are of different sizes, specifically the tiles at the row-bottom, 

right-most, and corner (see Fig. 2) in the original two-dimensional space if the start point (0, 0) was selected to be at the 

top left. Therefore, the pseudo code of the parallel processing part shown above will be replaced by the pseudo code 

shown below: 
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Fig. 2. Different possible tile sizes. 

 

 

 

 

/* Parallel Processing*/ 

threadID = get_thread_ID( ); 

/* normal tiles*/ 

for (i = (threadID % dp) * Tp ; i < ((threadID % dp) + 1) * Tp; i++) 

for (j = (threadID / dp) * Tq ; j < ((threadID / dp) + 1) * Tq; j++) 

parallel_processing(space[p, q]); 

/* right most tiles*/ 

for (i = (threadID % dp) * Tp ; i < p; i++) 

for (j = (threadID / dp) * Tq ; j < ((threadID / dp) + 1) * Tq; j++) 

parallel_processing (space[p, q]); 

/* row-bottom tiles*/ 

for (i = (threadID % dp) * Tp ; i < ((threadID % dp) + 1) * Tp; i++) 

for (j = (threadID / dp) * Tq ; j < q; j++) 

parallel_processing(space[p, q]); 

/* corner tile*/ 

for (i = (threadID % dp) * Tp ; i < p; i++) 

for (j = (threadID / dp) * Tq ; j < q; j++) 

parallel_processing(space[p, q]); 
 

As shown in the pseudo code earlier, parallel processing is broken into three types to cover all the possible scenarios of 

tile sizes. Therefore, the parallel processing part of the algorithm can cover the entire two-dimensional space regardless 

of the input size. 
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Finally, it is worth mentioning that the parallel tiling algorithm is designed such that even if the hardware architecture is 

made of one processing element, it can still work and provide correct results. Taking the same example of Table 1, 

where p = 1280, q = 720, and n = 1 (threadID = 0), dp and dq will therefore both be set to 1 (because no prime 

factorization or factor reduction is required). Accordingly, Tp and Tq will be equal to 1280 and 720, respectively. The 

mathematical formula after applying these numbers will show that the thread with the ID that equals zero (the only 

thread) can cover from 0 to 1280 for the horizontal dimension and from 0 to 720 for the vertical dimension, which is the 

same size as the original two-dimensional space. Thus, hardware-driven backward compatibility has been guaranteed 

with the proposed tiling algorithm. 

 

3.3. Time Complexity of the natively Parallel Tiling Algorithm 

When  we  are  trying  to  find  the  complexity  of  an algorithm, the interest is not in the exact number  of  operations  

that  are  being performed. Instead, the interest is in the relation of the number of operations to the problem size. Thus, 

with regard to the parallel algorithm proposed in this paper, the pre-processing stage, where the sizes of tiles are 

determined, is neglected, while the focus is given to the time complexity of the parallel processing part. However, unlike 

conventional sequential algorithms, where the time complexity is represented by the big-O notation, it is determined 

with regard to the problem size only. The time complexity of parallel algorithms is usually determined with regard to n 

and p, where p is the number of processors. In the case of our proposed tiling algorithm, enrolling p is inevitable due to 

the inherent presence of parallelism in its design. Therefore, the role of p needs to be investigated.  

 

Generally, the parallel processing part will take O (n × m), where n and m are the dimension of the 2D array. For 

simplicity, we assume that n and m are equal, hence, the time complexity will equal to O (n
2
). By using a number of 

processing units equal to p, the time complexity will equal to O (n
2
/p). However, since p is a constant and it does not 

necessarily scale as the size of the 2D array scales, it is then, neglected. Therefore, the time complexity of the parallel 

algorithm will remain the same O (n
2
). However, as empirically proved in Section 5.2, this is not necessarily means that 

their actual execution time is equal. 

 

 

4.0 TILE-LEVEL PARALLEL H.264 ENCODER 

Because videos are examples of two-dimensional data, the target domain of the parallel tiling algorithm matches the 

requirements intended to accelerate the process of applications that utilize such data. In this section, the parallel tile-level 

H.264 encoder, which is based on the inherently parallel tiling algorithm explained earlier, is proposed. 

 

4.1. Defining Tiles 

In the proposed design, tiles can be defined as an optional feature at the encoder side that can be used to explore 

parallelism. In addition, it is fundamentally correct that tiles will break the dependency at their boundaries in the same 

manner as those at slice boundaries. Moreover, once required, tiles can coexist with slices because the latter are initially 

proposed for packetization needs and are not only for parallel purposes. 

 

As mentioned previously, H.264 is a block-based video coding standard in which MBs are the data units used for 

transformation, intra-frame, and inter-frame prediction processes. Hence, to comply with this fact, tiles must be adjusted 

to be comprised of a specific number of MBs. In terms of H.264, 16×16 is the largest size of MB that can be used for 

inter-frame prediction. However, possible partitions of a 16×16 MB are used for transformation, intra-frame, and inter-

frame prediction processes. Therefore, a 16×16 MB is selected to be the unit size such that each tile can include a 

number from it and not be an arbitrary size. This requirement is easy to achieve by determining the size of the tile based 

on the size of an MB. However, because of the standard video resolution size, not all tiles will have the same number of 
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MBs; that is, tiles at the row-bottom and right-most of the original video frame may have a fraction of MBs or a 

different sizes of MBs compared to other tiles in the frame. Nevertheless, having a fractional MB size at the frame 

boundary is a typical case, even in the H.264 standard itself. 

 

4.2. Parallel Encoding with Tiles 

The idea of utilizing the parallel tiling algorithm in video encoding following the H.264 standard is based on 

independent encoding for each tile during transformation, inter-frame prediction, and intra-frame prediction processes. 

  

 

 
 

Fig. 3. Tile-level parallel H.264 encoder. 
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In entropy encoding, the original frame is treated in serial due to the raster-scan order and probability nature of this 

stage, which make parallelization unsuitable for the proposed parallel tiling algorithm (unless further research is 

conducted). Fig. 3 shows a video frame partitioned into a number of tiles; each tile can be independently and 

simultaneously encoded. In other words, each tile can be considered as a standalone frame in transformation, inter-frame 

prediction, and intra-frame prediction processes. In addition, each tile is encoded by one processing core. Moreover, in 

inter-prediction process, tiles will predict motions by motion vector (MV) from the analogue tile at the reference frame. 

However, if a neighboring MB belongs to another tile, its MV will be zero. In intra-frame prediction process, the tile 

boundaries are handled in the same manner as those of the frame boundaries of the H.264 encoder. Finally, the 

parallelization process is terminated once it reaches the entropy encoding process.  

 

4.3. Tile-Level Advantages and Limitations  

Fundamentally, the tile-level has several advantages over some other known parallel H.264 encoder approaches. Tiles 

are designed to be encoding-independent units, similar to slices. Therefore, no synchronization is required among them. 

In other words, no data exchange is required to be transferred between processors that encode different tiles. Besides, no 

waiting time is required when the wavefront-based technique for parallelizing H.264 encoder is applied. However, the 

tile-level continues to have an advantage over the slice-level in terms of fewer boundary lengths that break the 

dependency. Therefore, fewer MVs will be equal zero, which achieves better compression efficiency and  lower bit rate. 

Moreover, because of their relative size, tiles are not associated with large memory requirements and long latency, 

which is similar to the GOP and frame-level approaches. Furthermore, tiles are not as small as MBs. Therefore, no high 

synchronization is required when parallelization is employed, and no encoding dependency among tiles is required, 

which is inevitable at the MB-level approach. Nevertheless, as a parallel approach for the H.264 encoder, tiling can still 

cause degradation in video quality and a slight increment in bit rate when compared to the serial implementation of the 

H.264 encoder. This is because a particular tile is still required to break the dependency of MBs belonging to different 

tiles. Therefore, to inspect the applicability of the parallel tile-level H.264 encoder, considerable comparisons with other 

approaches are required, which are provided in the next section.  

 

5.0 EXPERIMENTAL SETUP, IMPLEMENTATION, RESULTS, AND DISCUSSION 

To experimentally determine tile-level ranking among parallel approaches, a comparison with various tile-level 

parallelization approaches for H.264 was conducted. The criteria of this comparison were selected based on several 

parallel granularities that have been previously used to encode H.264 in parallel. Hence, MB-level (wavefront-based) 

[13] and MB region partitioning [27] were selected. However, the slice-level [24], which has the same parallel 

granularity as the tile-level, as well as the multi-threading solution proposed in [12], were also included in the 

comparison. 

 

All other studies selected for the comparison were tested with four processors, which is the same number of processors 

used in our hardware platform (a quad-core Intel Core i7-2600K processor (four cores, 8 M cache)). Moreover, because 

the speed-ups in [12, 13, 24, 27] were evaluated in percentage as compared to the serial implementation, a more realistic 

comparison was provided regardless of the different computation powers of any of these processors. Additionally, four 

HD 1080p video test sequences were selected (see Table 1). The main reason for selecting these particular video 

sequences was to emphasize different types of motion and content. 
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Table 3. Video test sequences 

  

Test Sequence Number of Frames Size (MB) Format  

Pedestrian 217 1112 MB YUV 4: 2: 0 

Blue Sky 375 644 MB YUV 4: 2: 0 

River Bed 250 742 MB YUV 4: 2: 0 

Rush Hour 500 1483 MB YUV 4: 2: 0 

 

However, as will be presented, we were unable to provide a direct side-by-side comparison that matches the settings of 

our study with all of the other considered studies because some of their experimental setups were not detailed in the 

papers. For example, not all of the studies, especially those employing a standard or modified slice-level parallelization, 

have shown the relative bit rate increment or the video quality degradation when the number of slices is increased. 

However, there are few facts that can be relied on to avoid such a gap; these facts suggest that the size of the slice header 

is fixed. Hence, the standard slice-level can be used to estimate the bit rate increment of other studies that used a 

modified slice-level approach. 

 

5.1. Implementation 

Because OpenMP is a cross-platform, open-source technology that has been used extensively in several parallel 

solutions, it is used to implement the parallel H.264 tile-level encoder. OpenMP is the de facto standard of 

parallelization on shared memory architectures. Moreover, it is a directive-oriented API in which each directive is added 

to an existing code to explore parallelism. Regardless of its wide range of applications, OpenMP is tailored for large 

array-based applications, such as video coding, wherein each frame is an image, and each image can be represented in 

memory as a multi-dimensional array [31]. 

 

OpenMP 2.0 is one of the parallel APIs that has a built-in facility to retrieve the ID of the thread inside a parallel region. 

This attribute makes it possible to use OpenMP to implement the proposed approach. 

 

Tiles are not syntax elements in the H.264 standard; therefore, to add it to the encoder, a code modification is made to 

the JM 18.5 reference encoder. Particularly, the lencod.c file has undergone significant code modifications while 

modifications to other files were minor. We decided to embed the code in this file instead of adding a new file, such as 

tile.c and tile.h, to reduce the time required to start from scratch and to eliminate the chance of producing errors. The 

encoding flow after adding the tile level was basically a decision-based encoding whereby the encoder decides, based on 

user input, whether to follow the parallel tiling encoder, the parallel slice-level encoder, or the conventional serial 

encoder. 

 

5.2. Results and Discussion 

To obtain a clear result, the proposed tile-level parallel H.264 encoder was evaluated against three metrics: speed-up, 

peak-to-signal-noise-ratio (PSNR), and bit rate. 

 

Among all parallel approaches used in the comparison, the speed-up was evaluated with reference to the serial encoding 

time of the JM reference encoder. Table 2 shows the speed-up achieved by the parallel approaches, including the 

proposed tile-level, over the serial implementation of the JM reference encoder. 
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Table 4: Parallel evaluation of the proposed approach; processors = 4 

 

Test Sequence Serial Time, JM 18.5 Parallel Time Speed-up (times) 

Pedestrian 45.3 s 12.2 s 3.7 

Blue Sky 22.7 s 6.3 s 3.6 

River Bed 25.6 s 7.85 s 3.26 

Rush Hour 53.2s 15.1 s 3.52 

 

As illustrated in Table 4, the proposed approach exhibited a significant speed-up as compared to the JM 18.5 sequential 

reference encoder and good speed-up as compared to the other parallel approaches (outperformance) when compared to 

the results of other studies that have been discussed previously in section 2.2, except for the results in [12], where it was 

comparable. However, the speed-up of the proposed method did not reach the theoretical expectation of linearity. It 

achieved near-linear speed-up because of the overhead caused by the extra computation of the proposed technique. 

Because of the lack of hardware availability, no experiments were conducted to inspect the proposed approach with a 

higher number of processors, and no hyper-threading technology was used to provide more consistence results. 

 

Additionally, we evaluated the influence of the tile-level approach using various PSNR and bit rate, which is expressed 

as a percentage between the reference encoder JM 18.5 and this approach. However, none of the studies that utilized the 

slice-level had evaluated the PSNR. Moreover, only one study, i.e., [12], had studied the effect of the bit rate. Therefore, 

we relied on our standard implementation of the slice-level as an alternative once required, while the values of these two 

metrics were directly taken from [13, 27]. Accordingly, Table 5-9  shows the difference in bit rate and PSNR of tile-

level and slice-level approaches when the number of tiles and slices was equal to 2, 4, 6, 8, and 10 respectively. 

 

Table 5: Video quality and compression efficiency results (slices = tiles = 2). 

Test Sequence 
Reference Encoder, JM 18.5 Proposed Tile-based 

∆PSNR ∆Bit rate ∆PSNR ∆Bit rate 

Pedestrian -0.72 dB +3.18% -0.23dB +2.12% 

Blue Sky -0.65 dB +2.28% -0.19dB +0.99% 

River Bed -0.69 dB +2.78% -0.53dB +2.15% 

Rush Hour -0.81 dB +2.98% -0.41dB +1.26% 

 

Table 6: Video quality and compression efficiency results (slices = tiles = 4). 

Test Sequence 
Reference Encoder, JM 18.5 Proposed Tile-based 

∆PSNR ∆Bit rate ∆PSNR ∆Bit rate 

Pedestrian -0.93 dB +5.13% -0.43 dB +3.11% 

Blue Sky -0.83 dB +3.48% -0.34 dB +1.52% 

River Bed -1.23 dB +3.98% -0.67 dB +2.87% 

Rush Hour -0.92 dB +4.15% -0.62 dB +2.41% 

 

 

 

Table 7: Video quality and compression efficiency results (slices = tiles = 6). 

Test Sequence 
Reference Encoder, JM 18.5 Proposed Tile-based 

∆PSNR ∆Bit rate ∆PSNR ∆Bit rate 

Pedestrian -1.24 dB +8.24% -0.61 dB +5.21% 

Blue Sky -0.98 dB +6.11% -0.51 dB +3.17% 

River Bed -1.95 dB +5.67% -0.99 dB +4.02% 

Rush Hour -1.58 dB +5.43% -0.87 dB +3.52% 
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Table 8: Video quality and compression efficiency results (slices = tiles = 8). 

Test Sequence 
Reference Encoder, JM 18.5 Proposed Tile-based 

∆PSNR ∆Bit rate ∆PSNR ∆Bit rate 

Pedestrian -1.65 dB +10.69% -0.92 dB +7.58% 

Blue Sky -1.78 dB +8.62% -0.85 dB +5.03% 

River Bed -3.45 dB +8.59% -1.69 dB +6.19% 

Rush Hour -3.19 dB +7.93% -1.48 dB +5.64% 

 

Table 9: Video quality and compression efficiency results (slices = tiles = 10). 

Test Sequence 
Reference Encoder, JM 18.5 Proposed Tile-based 

∆PSNR ∆Bit rate ∆PSNR ∆Bit rate 

Pedestrian -2.16 dB +12.43% -1.27 dB +8.61% 

Blue Sky -2.37 dB +10.49% -1.16 dB +5.97% 

River Bed -4.07 dB +9.82% -2.45 dB +7.03% 

Rush Hour -3.92 dB +10.07% -1.88 dB +6.47% 

 

When compare the results of Tables 5-9 and the relavent results of the related work dissuced in section 2.2, it is evident 

that the proposed tile-level approach failed to achieve better results in terms of PSNR and bit rate compared to [13] and 

[26]. This is because the MB-level approach did not incur bit rate increment, while it achieved better bit rate reduction as 

compared to [12] and [23] for approximately 50% reduction in several scenarios. Similarly, the visual quality of the tile-

level approach was proved to be better than [12] and [23] based on the PSNR obtained. 

 

In conclusion, none of the studies outperformed our method for all of the considered performance metrics. Therefore, 

employment of our proposed method can be considered as a trade-off method because it achieves a better or comparable 

speed-up when compared to other parallel approaches. At the same time, it outperforms some of these parallel 

approaches in terms of the PSNR and generated bit rate. However, as we indicated earlier in this work, the capacity of 

the target platform would affect the performance of these approaches in terms of speed-up; therefore, it is possible to 

obtain variations in results. 

 
 

6.0 CONCLUSIONS AND FUTURE WORK  

A new parallel granularity for the H.264 encoder was presented in this paper. Through tiling, the proposed approach 

demonstrated either faster or comparable encoding time as compared to other parallel approaches. On the other hand, in 

terms of PSNR and bit rate, the proposed parallel approach, in some scenarios, failed to outperform some of the parallel 

approaches. When related works used a standard or modified slice, the proposed approach performed better. 

 

As future works, we have identified few directions. The first is inspired by contributing a type of algorithmic-level 

approach, in which further optimization of the algorithm can be accomplished to make it faster and simpler. Similarly, 

dynamic scheduling can be introduced in application areas where computational load differs in parts of the data domains 

in order to reach a similarity in terms of per-processor computation. In terms of implementation, because this work was 

implemented on OpenMP, inclusion can be made to support other parallel APIs and libraries, such as POSIX threads 

[32] and Open MPI [33]. The second direction would be exploring the possibility of further enhancing the visual quality 

of the tile-level approach by designing a customized deblocking filter at the tile boundaries. Moreover, entropy coding 

was excluded from being run in parallel in this work, whereas a few studies, such as [34, 35], have tried to parallelize the 

entropy encoding process in H.264. Therefore, there is ample room for investigating the possibility to include the 

entropy encoding process in the parallel loop without introducing a significant amount of extra computation, thereby 

introducing a parallel-friendly H.264 encoder. Thirdly, native hybrid parallelism, where the CPU and other types of 

processors such as the GPU are utilized together to further reduce the encoding time of the proposed parallel H.264 
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tiling approach, can also be investigated. However, as a post stage, such an investigation is not considered new and has 

been presented in several literatures such as [36].     
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