
Adapting Web Content Based On User Connection Speed To Ensure Response Time. pp 266-276

266
Malaysian Journal of Computer Science. Vol. 26(4), 2013

ADAPTING WEB CONTENT BASED ON USER CONNECTION SPEED TO ENSURE RESPONSE TIME

Reza Rostami
1
 and Thiam Kian Chiew

2

1, 2
Faculty of Computer Science and Information Technology

University of Malaya, Kuala Lumpur, Malaysia

Email:
1
reza_lg13@yahoo.com;

2
tkchiew@um.edu.my

ABSTRACT

Response time to download a Web page is mainly determined by network bandwidth and the size of the page. With the

notion of tolerable waiting time (TWT), this response time should be confined below a threshold value for user

satisfaction. Nevertheless, users connect to the Internet with different connection speeds, causing variable response

times in relation to different connection speeds. This paper presents a Web content adaptation and delivery technique

based on user connection speed in order to download the page within a configurable time threshold. The technique not

only ensures Web page response time meets the desired threshold value, but also preserves overall page quality by

preventing Web page items to have inconsistent quality.

Keyword: Web Content Adaptation, User Connection Speed, Page Size

1.0 INTRODUCTION

Websites used to be simple collection of documents normally in the text format. As the use of the Internet gets more
popular, the Web has evolved into various applications. People do almost everything such as playing games, shopping,
paying bills and many other activities online. In parallel with this phenomenon, Web applications make use of servers
that generate dynamic Web pages to serve different users with different needs. Generating dynamic pages effectively
reduces tedious work of developing many static pages but needs more server side processing, and makes the Web
developers to face tougher performance challenges.

On the other hand, Internet users are not normally patient enough to wait for a long time for a Web page to download
and will easily switch to the competitor company’s website, simply because of low download speed rather than the
services that the website offers. Therefore, the performance (in terms of download speed known as response time) of a
website is one of the key factors for customers to either hang on to or leave it [1].

In addition, users connect to the Internet with different bandwidths and connection speeds. A Web page can be
downloaded in one area in less than three seconds while another user cannot see the same page within the same time
because of the lack of bandwidth and low connection speed. All of these raise the need of servers that can adapt to
different user connection speeds and deliver customized Web content based on the speeds in order to ensure desirable
response time is achieved.

To overcome this problem some context-aware techniques have been developed [2, 3]. According to [2], a system that
uses context to provide relevant services for the users, where the relevancy depends on user’s task is a context-aware
system. Content adaptation techniques are developed to effectively adapt the Web content and improve the performance
of the websites. Examples of the techniques include constraining the page size under the situation of low bandwidth or
slow user connection speed; recommending relevant contents to the users; etc.

The content adaptation technique developed by [4] is one that focuses on ensuring response time. For a Web page
comprising of multiple Web content items (e.g. images), and each item has multiple candidate versions to be selected to
compose the resulting page, the technique chooses the best possible version for each Web content item based on user
connection speed. The selection algorithm does well, but some issues remained unsolved:

Adapting Web Content Based On User Connection Speed To Ensure Response Time. pp 266-276

267
Malaysian Journal of Computer Science. Vol. 26(4), 2013

• When there are many Web content items in a Web page and there are many versions available for each Web
content item, the computation becomes complicated using their technique.

• The earlier items on the page have the opportunity to have their best versions chosen while the later items are
likely to get lower quality versions. This leads to having a page that includes some Web content items with very
high quality and the rest of items with very low quality. This results in a page with overall quality that does not
reflect the adaptation criteria, i.e. user connection speed.

In this paper, we developed a technique that adapts the Web content based on user connection speed, since the user
connection speed is one of the key factors that affects the performance of websites. We used the idea of multiple
versions for each Web content item suggested by [4], but developed a new selection algorithm to overcome the
limitations of their algorithm. We also designed a folder structure and a reusable software component that can
effectively handle the act of updating the information of different versions for Web content items. Since the focus of this
research is on Web content adaptation technique rather than the detection of user connection speed, we have used the
user connection speed detection technique developed by [5]. This technique is chosen because it is easy to be
implemented using JavaScript and yet is effective enough for this research.

2.0 BACKGROUND

Context-awareness can be defined as “presentation of information and services to a user, automatic execution of a
service, and tagging of context to information for later retrieval.” [2]. The work is useful to recognize the scope of
context-aware computing and select appropriate context and context-aware techniques to use. [3] developed a context-
aware adaptation framework (FAÇADE) to fulfill the existing variable and incongruous environments. They used three
different contexts for their adaptation methods, namely device, network, and user. [6] introduced additional contextual
variables such as state of activities, roles, collaborators' location, and available resources in addition to other typical
variables of working groups such as platform, to design and implement a framework that allows application developers
to specify the adaptability of groupware systems. It can be noted that context-aware system are designed to serve users
with different needs in different situations in order to achieve some specific goals. For Web-based systems, content
adaptation is a typical approach to realize the systems’ context-awareness.

Web content adaptation can be implemented through different techniques, taking into account different factors, and the
adaptation can be done at the server side or by a third party agent. For example, [7] developed a server based content
adaptation technique. Their method includes multiple versions of each multimedia Web content items, one of which will
be chosen based on the client device capability by a customizer. [8] developed a framework for Web content adaptation
based on the user device’s capability. They offered designs of business objects, logical Web contents, and content
adaptation separately. [9] developed a solution to the Web server overload problem that relies on adapting the delivered
content. They used two versions (the full and degraded versions) for each item and a program that can switch between
the two versions based on server state.

Meanwhile, [10] discussed some useful transformation for image contents of a website and the way it can affect the
website performance. They have developed an HTTP protocol extension for server directed transcoding (SDT) and
architecture for SDT applets and SDT proxies. [11] developed a decision engine to adapt Web content when the server
receives a request from a mobile device by considering the user’s preferences, the device’s rendering capability and the
network conditions. [12] offered a service-based content adaptation architecture that facilitates the use of third-party
adaptation services and enables a novel content negotiation and adaptation model. Their technique allows users to select
appropriate adaptation services through a negotiation with the side that provides the content.

In addition, [13] developed a content adaptation technique for wireless Web services. They used Document Object
Model API to generate dynamic content based on pre-stored user preferences and user’s device capabilities. In another
research, [14] investigated content adaptation issues for mobile devices by considering the client context and the
environment that receives requests. Adaptation is performed at the presentation layer, based on a critical point of view
related to the semantics of content as a hierarchy of items.

A Web content adaptation and delivery mechanism based on application-level quality of service (QoS) policies was
presented by [15]. Two kinds of application-level QoS policies were introduced: transmission time and transmission
order of inline objects. They used two abstract terms namely low and high to prioritize images and this causes the

Adapting Web Content Based On User Connection Speed To Ensure Response Time. pp 266-276

268
Malaysian Journal of Computer Science. Vol. 26(4), 2013

adaptation to be limited with two situations only, a limitation that is similar to one faced by [9]. [16] proposed an e-
learning system that can adapt its content based on each learner’s environment. Their system first detects the
environment conditions of each user, and then delivers the format and type of data for e-Learning based on the
conditions. They considered user connection speed and user operating system as user environment.

The underlying motivation for content adaptation techniques mentioned above is to enhance overall user satisfaction
which is achieved through delivering Web contents appropriate to users’ tasks, platforms (e.g. operating systems),
devices (e.g. mobile) as well as to reduce transmission time or response time. Response time is an important factor to
determine the success of a website. As coined by [1], there is a tolerable waiting time beyond which the users may leave
regardless quality of contents or services provided by the website. However, among the researches mentioned above,
very few used response time as an explicit measure for the effectiveness of adaptation techniques proposed, except [4]
and [15] while [9] addressed response time issue indirectly through reducing server load. These researches adapt Web
contents to control the resulting page size in order to constrain response time below a threshold value.

The main drawback of [9] and [15] has been mentioned above. In this paper, we focus on the adaptation technique
proposed by [4]. In [4], multiple versions of images are used and the best version for each image is chosen based on user
connection speed. The different versions of a component item have different data sizes. According to their work,
suppose a multimedia Web page, P, consists of a number of component items di where P = {d1, d2. . . dn}. A
component item di can be computed by transcoding into versions, di1, di2, …, dij with different resolutions. The problem
to be solved is choosing the best version of each Web content item in a way that the sum of their sizes is maximized
subject to the Web page size constraint. The Web page size constraint can be calculated by multiplying the user
connection speed and a time threshold, within which the Web page is supposed to be loaded. They formulated this
problem as a linear multi-choice knapsack problem (LMCKP). Then they mapped the LMCKP problem to a knapsack
problem (KP) and finally offered a dynamic programming method to solve the knapsack problem. The selection of the
best version for each item is a computation intensive mechanism. It is not efficient when there are many Web content
items in a Web page and there are many versions available for each Web content item. In addition, as the Web content
items must be sorted in descending order in terms of their size, the maintenance/updating of the database that stores data
about the items and their versions is difficult and tedious. In addition, the mechanism favors earlier items over later
items that are selected, resulting larger quality difference among the items. We thus propose a better Web content items
selection algorithm to overcome the limitations.

3.0 ARCHITECTURE AND DESIGN

Figure 1 shows the architecture of our content adaptation technique. First, the user connection speed is detected. Then
the Web page size constraint is calculated using the detected user connection speed. The Web page size constraint is the
maximum size that the Web page can have so that it could be downloaded within a configurable time threshold. Once all
Web content items that construct the Web page are identified, the best possible version for each Web content item could
be selected by using the selection algorithm. The algorithm is encapsulated in a software component called Adapter.
This process is done using the information about different versions of the Web content items, which is stored in a
database. The content of the database needs to be initiated or updated in offline mode. This process is automatically
done using another software component called Scanner, which scans a folder structure that is defined to accommodate
different versions of the Web content items in the hard disk. Finally, the Web page can be rendered and delivered using
the selected versions of the Web content items.

Adapting Web Content Based On User Connection Speed To Ensure Response Time. pp 266-276

269
Malaysian Journal of Computer Science. Vol. 26(4), 2013

Fig. 1: System architecture

3.1 Folder Structure to Organize Web Content Items

In this research, a term called Web content item is used. A Web content item is any single item that constructs a Web
page (e.g. image, video and animation). In other words, content of a page is composed of all Web content items of the
page. In our adaptation method, multiple versions for each Web content item are considered. Imagine each page consists
of n Web content items, w1, w2, w3, …, wn , where n>0 .

For each wi there are m versions, v1, v2, …, vm , where m>0. For each Web content item, v1 is the original version while
v2 is a degraded version of v1 and in turn, vi is a degraded version of vi-1. This means for each Web content item:
Size of v1> Size of v2>…….> Size of vm

The problem to be solved is to choose the best version of each Web content item in a way that the sum of their sizes is
maximized subject to the Web page size constraint. The Web page size constraint can be calculated by multiplying the
user connection speed and a time threshold, within which Web page is supposed to be downloaded. To manage Web
content items, there is a need to store the information of Web content items and their different versions in a database.
There are some issues arising through working with the mentioned database. First, to initialize the data stored in the
database, the information of any single version of any Web content item should be entered separately and the version
number of each version should be calculated based on its size.

For large websites, doing all these things manually needs a tedious effort and is very error prone. Furthermore, there is
always a need to update the Web content item database in relation to updating the website. The action of updating is as
difficult as initiating the database. These difficulties cause the need to develop a component that can be used in offline
mode, in order to avoid runtime overhead that deteriorates website performance. The component automatically scans the
hard disk in order to record the information of Web content items and their corresponding versions in the database.

To manage Web content items effectively, there is a need to design a folder structure and record the information,
including folder for each item, the name of each version of that item (the name includes the type of file as well, e.g.
image1.jpg), and the version number for each file in the database. The developed folder structure needs to be flexible
enough to fulfill the system requirements.

Adapting Web Content Based On User Connection Speed To Ensure Response Time. pp 266-276

270
Malaysian Journal of Computer Science. Vol. 26(4), 2013

To do so, a set of rules should be defined such that the address path of each Web content item should be the URI of a
folder. The folder contains files that represent the Web content item’s versions. For example, consider a Web content
item that is an image called ‘image1.jpg’. This item has a storage address and this address can be used to locate the
image. If the image is planned to be used in a Web page in the normal way, the URI of the image can be like
‘/subcategory/image1.jpg’. Nevertheless, in our proposed folder structure, since an image has multiple versions, the Web
content item (image1) will be stored in a folder with the URI of ‘/subcategory/image1’, and this folder contains some
files that are in fact different versions of image1 (e.g. version1.jpg, version2.jpg, and version3.jpg). Therefore, in any
Web applications that use the proposed method, instead of recording the path to each Web content item and its versions,
there is only a track to the folder (through its URI) that contains different versions of the item. Different versions of the
item are identified based on their sizes in ascending order rather than their names. This ensures that the system is
independent from file names and types.

Each folder should contain at least one version of a Web content item. It can alternatively contain any other number of
versions. For Web content items that are not supposed to be delivered with a degraded version, there should only be one
version in the corresponding folder. This allows the Web developer to specify important Web content items such as
company logo that must be delivered with the highest quality. A database is needed to keep track of Web content items
and their version’ information. This information includes the URI of a folder for each item, the name of each version of
that item, and the version number for each file.

3.2 Scanner Component and Detection of User Connection Speed

We developed a software component called Scanner that scans the hard disk, given a root folder with structure
mentioned in the previous section, and initiates or updates the corresponding database that stores information about Web
content items. This component automatically calculates the version numbers based on size (the best version assigned
with version number 1, second best version with 2, and so on) and stores the version numbers in the database.

An existing user connection speed detection method proposed in [5] was used to detect user connection speed in this
research. The method uses the capability of Java Script to detect user connection speed. A configurable time threshold
for downloading Web pages was also defined. This time threshold indicates the duration within which Web pages are
expected to be downloaded. We also defined Web page size constraint as the maximum size that a Web page can have in
order to be downloaded within the time threshold. It can be calculated as below:

Sc = Cs * Tt (Equation 1)

where Sc is the Web page size constraint; Cs is the user connection speed detected; and Tt is the time threshold defined.
The Web page size constraint is later used by the adapter component to adapt the Web content accordingly.

3.3 Adapter Component

We developed a new Web content item selection algorithm and encapsulate it in the Adapter component. This algorithm
first calculates the original size of the Web page, So as:

 So = ∑
=

n

i

wiS
1

1
 (Equation 2)

where Swi1 is size of the best version of Web item i and n is the number of Web content items that comprise the page. If

So ≤ Sc, no content adaptation is required. Otherwise the degraded rate, Dr will be calculated as:

 Dr =

o

c

S

S
 (Equation 3)

Then the maximum size for each Web content item i, Swimax is calculated as shown in Error! Reference source not
found.4:
 Swimax = Swi1 * Dr (Equation 4)

Adapting Web Content Based On User Connection Speed To Ensure Response Time. pp 266-276

271
Malaysian Journal of Computer Science. Vol. 26(4), 2013

The version with its size equals or less than Swimax will then be chosen. Two situations should be considered here, namely
iterative improvement, and selection of the best case in the worst scenario

3.4 Iterative Improvement

The size of the selected version for a Web page item i is normally less than Swimax and thus some capacity will be wasted.

The wasted capacity for Web content item i, Sei is calculated as shown in Equation 5:

 Sei = Swimax - Swisel (Equation 5)

where Swisel is the size of selected version for Web content item i. The sum of wasted capacity for all Web content items,
Seall can then be defined as:

 Seall =∑
=

n

i

eiS
1

Seall might be a considerable amount that can be used to improve the quality of some selected versions. For example,
consider a page that has 3 Web content items namely Item 1, Item 2, and Item 3, and consider each item has some
versions as follows:
Item 1: v1 (20kB), v2 (16kB), v3 (13kB), v4 (10kB)
Item 2: v1 (14kB), v2 (11kB), v3 (8kB)
Item 3: v1 (23kB), v2 (21kB), v3 (19kB), v4 (17kB), v5 (15kB)

Assuming the connection speed Cs is 6kB/s and time threshold Tt is 7s, page size constraint Sc will be 42kB and
degraded rate Dr will be 0.735. Swimax for Items 1, 2, and 3 are 14.7kB, 10.29kB, and 16.09kB; while the selected
versions are v3, v3, and v5, respectively. The total wasted capacity Seall is 5.08kB.

With this wasted capacity, Item 1 can be checked for possible quality improvement. v3 with the size of 13kB is chosen
for Item 1 and the next better version (version with bigger size) is v2 with the size of 16kB. Since the size difference
between the two versions (3kB) is less than 5.08kB, the better version v2 will be selected for Item 1. Total wasted
capacity Seall will thus be reduced too, i.e. 5.08kB – 3kB= 2.08kB.

With the new Seall of 2.08kB, Item 2 is then checked for possible quality improvement. As v3 with the size of 8kB is
chosen for Item 2 and the next better version is v2 with the size of 11kB, and the size difference between the two
versions (3kB) is more than 2.08kB, v3 is remained selected for Item 2.

Finally, Item 3 is checked for possible quality improvement. As v5 with the size of 15kB is chosen for Item 3 and the
next better version is v4 with the size of 17kB, and the size difference between the two versions (2kB) is less than
2.08kB, v4 will be selected instead while the new Seall will now become 0.08kB.

This process will be repeated for all Web content items until none of the selected versions can be further improved.
Doing so resulted in the selected versions of v2 (16kB) for Item 1, v3 (8kB) for Item 2, and v4 (17kB) for Item 3. Thus,
the resulting Web page size is 41kB, which is less than but very close to 42kB (Web page size constraint, Sc).

3.5 Selection of the Best Case in the Worst Scenario

If Swimax of a Web content item is less than the size of its last version (the version with the smallest size), the last version

must be chosen. In this case, Sei will have a negative value and eventually, there is a potential for Seall to be a negative

value as well. This means that the sum of selected versions exceeds the Web page size constraint, Sc. In this case, instead

of improving the chosen versions, they should be iteratively degraded one by one until the total wasted capacity Seall

becomes a non-negative number or as close to zero as possible.

Adapting Web Content Based On User Connection Speed To Ensure Response Time. pp 266-276

272
Malaysian Journal of Computer Science. Vol. 26(4), 2013

4.0 EVALUATION

We evaluated our system in two parts:

• Evaluating the effectiveness of our technique in real world situations.

• Evaluating the efficiency of our selection Algorithm against the algorithm developed by [4].

4.1 Evaluating the Effectiveness of Our Technique in Real World Situations

We tested and evaluated our method by taking the following steps. First we created a folder called ‘images’ that
contained all versions of Web content items used in a Web application, in the way explained earlier in this paper. Then a
desktop application was developed to use the Scanner component to scan the folder, and initiate the corresponding
database. The Web application used the Adapter component to adapt the Web content, based on user connection speed
detected using the technique developed by [5]. This Web application was also equipped with the ability of recording
response time to download each Web page. The response time will be submitted to the server and is used to evaluate the
system. Furthermore, another Web application that used the original Web content items without adaptation but would
submit response time to the server was developed to compare its performance with the one that supported our adaptation
technique.

We uploaded both Web applications to the same server and asked 20 users from 5 different cities to use the applications
in real environment, and submit the response time to the server. We set the time threshold to load the Web page to 10
seconds and asked the users to browse the homepage of both applications at the same time and submit the performance
data to the server. This ensures that the users were connected to both applications with the same, or at least similar, user
connection speed. The submitted data were stored in a database for analysis and comparison. The size of the original
homepage is 1267kB. Table 1 shows the data that were submitted to the server by the 20 users. The first column shows
user connection speed. The second column is Web page size constraint, Sc. The third column is the size of the adapted
Web page which is the sum selected versions for all Web content items. The fourth column is the time to load the
adapted Web page. Finally, the last column is the time to load the original Web page.

Table 1: Data collected from 20 users

User

connection

speed

(kB/s)

Web page

size

constraint

(kB)

Size of

adapted

Web

page

(kB)

Time

to load

adapted

Web

page (s)

Time

to load

original

Web

page (s)

37 370 367 10.409 33.432

38 380 380 10.996 34.713

39 390 389 9.907 31.988

43 430 429 10.889 29.092

58 580 580 10.343 23.039

44 440 434 9.678 29.909

45 450 443 9.990 27.055

52 520 512 10.345 26.003

59 590 589 10.458 22.136

40 400 399 10.512 30.380

39 390 386 10.056 34.403

41 410 409 10.404 30.043

49 490 477 9.951 27.103

46 460 458 10.898 27.301

120 1200 1199 10.777 11.030

125 1250 1244 10.878 10.908

98 980 968 9.309 13.432

Adapting Web Content Based On User Connection Speed To Ensure Response Time. pp 266-276

273
Malaysian Journal of Computer Science. Vol. 26(4), 2013

123 1230 1208 9.012 10.870

89 890 879 10.173 14.942

98 980 968 9.680 13.044

Figure 2 graphically compares the behavior of the homepage of the adapted and original websites for the 20 users. To
understand whether or not the homepage of the adapted website was loaded within the expected time (10 seconds), we
need to compare the blue line (expected time) and the red line (time taken to download the adapted homepage). It can be
seen that the red line and the blue line are very close to each other for all the users. The response times to download the
adapted homepage were between 9 to 11 seconds. It is not always equals to 10 seconds, however, the 1 second
difference (+/- 10%) is still acceptable. Furthermore, for 10 out of the 20 users (50%), the difference between the
expected and actual response time was less than 0.5 seconds (+/- 5%). This means that the adapted homepage was
loaded within the expected time range and we have successfully achieved our goal for controlling Web page response
time.

Comparing the green line (time to load the original homepage) and the red line, we can see for all users the adapted
homepage was loaded in shorter time than the original homepage. The time to load the original homepage was depended
on the user connection speed (higher user connection speed led to shorter response time) and exceeded the expected
time. For example, for the user numbered 15, 16 and 18, time to load the original homepage was very close to time to
load the adapted homepage because the user connection speed was relatively high in these cases. On the contrary, the
time to load the adapted homepage was almost equal to the expected time all time and was independent from the user
connection speed.

Fig. 2: Performance chart for downloading the original and adapted Web pages

4.2 Evaluating the Efficiency of Our Selection Algorithm Against the one Developed by [4]

In the algorithm developed by [4], the earlier items that were evaluated by the algorithm have the higher opportunity to
have their best versions chosen while the later items are likely to get lower quality versions. This leads to having a page
that includes some Web content items with very high quality and the rest of items with very low quality. This is
apparently an undesired result as the overall page quality does not appropriately reflect the user connection speed and
the page is segregated into two or even more sections in terms of Web content items’ quality. In contrast, with our
selection algorithm, the version that better reflects the user connection speed is chosen initially based on the degraded
rate for every item. Then in terms of version improvement, our method uses in-stage improvement iteratively causing
smaller quality difference between the selected versions for all Web content items.

Adapting Web Content Based On User Connection Speed To Ensure Response Time. pp 266-276

274
Malaysian Journal of Computer Science. Vol. 26(4), 2013

In relation to maximization of Web page size, neither algorithm is superior to the other one. It really depends on the
distribution of sizes and the number of versions for each Web content item. Here are three examples that show three
different situations.

Example 1: Web page size constraint, Sc = 120kB. The versions of Web content items are depicted in Table 2. Versions
selected by both algorithms are shown in the table as well.

Table 2: Web content items and their versions for Example 1

 Ver.1 (kB) Ver. 2 (kB) Ver. 3 (kB) Selected by [4]’s algorithm Selected by our algorithm

Item1 90 40 10 Ver. 1 = 90kB Ver. 2 = 40kB

Item2 90 30 10 Ver. 3 = 10kB Ver. 2 = 30kB

Item3 90 30 10 Ver. 3 = 10kB Ver. 2 = 30kB

Total - - - 110kB 100kB

[4]’s algorithm outperforms ours in relation to page size maximization subject to the page size constraint but their
algorithm clearly suffers from the selected Web content items having larger quality difference; where the best version is
chosen for Item 1 while the worst versions are chosen for the rest. With our algorithm, the medium versions are chosen
for all the three items.

Example 2: Web page size constraint, Sc = 120kB. The versions of Web content items and the selected versions are
shown in Table 3.

Table 3: Web content items and their versions for Example 2

 Ver.1 (kB) Ver. 2 (kB) Ver. 3 (kB) Selected by [4]’s algorithm Selected by our algorithm

Item1 90 60 10 Ver. 1 = 90kB Ver. 2 = 60kB

Item2 90 30 10 Ver. 3 = 10kB Ver. 2 = 30kB

Item3 90 30 10 Ver. 3 = 10kB Ver. 2 = 30kB

Total - - - 110kB 120kB

With only one out of nine versions having a different size as compared to Example 1, our algorithm outperforms [4]’s
and shows closer quality among the selected versions of Web content items.

Example 3: Web page size constraint, Sc = 120kB. The versions of Web content items and the selected versions are
shown in Table 4.

Table 4: Web content items and their versions for Example 3

 Ver.1 (kB) Ver. 2 (kB) Ver. 3 (kB) Selected by [4]’s algorithm Selected by our algorithm

Item1 90 50 10 Ver. 1 = 90kB Ver. 2 = 50kB

Item2 90 30 10 Ver. 3 = 10kB Ver. 2 = 30kB

Item3 90 30 10 Ver. 3 = 10kB Ver. 2 = 30kB

Total - - - 110kB 110kB

Again, with just one difference in the size of a version as compared to the previous examples, now both algorithms
perform equally in terms of page size maximization subject to page size constraint.

Adapting Web Content Based On User Connection Speed To Ensure Response Time. pp 266-276

275
Malaysian Journal of Computer Science. Vol. 26(4), 2013

5.0 CONTRIBUTIONS, LIMITATIONS AND FUTURE WORK

We have developed a technique for Web page content adaptation based on user connection speed. Different user
connection speeds will cause a same page to be downloaded in different duration of time. Thus, in order to ensure the
response time being controlled under a desired time threshold regardless of user connection speed, the page size should
be adjusted accordingly.

To adapt Web content, we designed a selection algorithm that does not cause much overhead and can effectively be used
when there are many Web content items in a Web page and there are many versions available for each Web content
item. Furthermore, our algorithm can select the versions for Web content items in a way that better reflects the user
connection speed. This is an improvement over [4]’s algorithm. We have also shown that our algorithm performs as
good as [4]’s algorithm in terms of page size maximization. It is a matter of versions’ sizes and distribution that will
determine total size of the adapted page.

We have also designed a folder structure and a reusable software component that can effectively handle the act of
updating the information of different versions for Web content items, with very minimal human intervention. This
supports the automation of content adaptation to a higher degree.

Nevertheless, since we used one session variable to store the detected user connection speed, and the speed may change
during a session, the user connection speed used for determining page size constraint may differ from the real user
connection speed. It is, however, beyond the scope of our research to design a more effective technique to detect user
connection speed dynamically and correctly. In addition, our proposed technique only takes the user connection speed
into consideration to adapt the Web content, while sometimes, there is a situation where the server is overloaded and
causes long download delay rather than slow user connection speed. User device capability is also one of the important
factors that affects website performance as perceived by end users and this was not considered in our research as well.

To overcome the limitations, there is a need to consider more factors to adapt the Web content such as user device
capabilities and server overload state. Doing so shall produce a better Web content adaptation technique that improves
overall result of content adaptation. This is a necessary step leading to convincing researchers and practitioners in related
fields to adopt our algorithm.

REFERENCES

[1] Nah, F. F.-H. " A Study on Tolerable Waiting Time: How Long are Web Users Willing to Wait?", in

Proceedings of American Conference on Information Systems (AMCIS), Tampa, 2003.

[2] Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., & Steggles, P. "Towards a Better

Understanding of Context and Context-Awareness", in Proceedings of the 1
st
 International Symposium on

Handheld and Ubiquitous Computing (HUC'99), Karlsruhe, 1999.

[3] Kurz, B., Popescu, I., & Gallacher, S. "FACADE - A Framework for Context-Aware Content Adaptation and

Delivery", in Proceedings of the 2nd Annual Conference on Communication Networks and Services Research,

Fredericton, 2004.

[4] Jan, R-H, Lin, C-P, & Chern, M-S. "An Optimization Model for Web Content Adaptation", Computer

Networks, Vol. 50, No. 7, 2006, pp. 953-965.

[5] Skinner, J. JavaScript Speed Detection, 2005, Available: http://www.thefutureoftheweb.com/blog/javascript-

speed-detection, Accessed: 15 February 2012.

Adapting Web Content Based On User Connection Speed To Ensure Response Time. pp 266-276

276
Malaysian Journal of Computer Science. Vol. 26(4), 2013

[6] Decouchant, D., Mendoza, S., Sánchez, G., & Rodríguez, J. "Adapting Groupware Systems to Changes in the

Collaborator's Context of Use", Expert Systems with Applications, Vol. 40, No. 11, 2013, pp. 4446-4462.

[7] Mohan, R., Smith, J.R., & Li, C-S. "Adapting Multimedia Internet Content for Universal Access", IEEE

Transactions on Multimedia, Vol. 1, No. 1, 1999, pp. 104-114.

[8] Kitayama, F., Hitose, S., Kondoh, G., & Kuse, K. "Design of a Framework for Dynamic Content Adaptation to

Web-Enabled Terminals and Enterprise Applications", in Proceedings of Asia-Pacific Software Engineering

Conference (APSEC'99), Takamatsu, 1999, pp. 72-79.

[9] Abdelzaher, T & Bhatti, N. "Web Content Adaptation to Improve Server Overload Behavior", Computer

Networks: The International Journal of Computer and Telecommunications Networking, Vol. 31, No. 11-16,

1999, pp. 1563-1577.

[10] Knutsson, B., Lu, H., & Mogul, J. "Architecture and Pragmatics of Server-Directed Transcoding", in

Proceedings of the 7th International Workshop on Web Content Caching and Distribution, Boulder, 2002.

[11] Lum, W. Y. & Lau, F. C. M. "A Context-Aware Decision Engine for Content Adaptation", IEEE Pervasive

Computing, Vol. 1, No. 3, 2002, pp. 41-49.

[12] Berhe, G., Brunie, L., & Pierson, J-M. "Modeling Service-Based Multimedia Content Adaptation in Pervasive

Computing", in Proceedings of the 1st Conference on Computing Frontiers, Ischia, 2003, pp. 60-69.

[13] Pashtan, A., Kollipara, S., & Pearce, M. "Adapting Content for Wireless Web Services", IEEE Internet

Computing, Vol. 7, No. 5, 2003, pp. 79-85.

[14] Lemlouma, T. & Layaida, N. "Context-Aware Adaptation for Mobile Devices", in Proceedings of IEEE

International Conference on Mobile Data Management, Berkeley, 2004, pp. 106-113.

[15] Harumoto, K., Nakano, T., Fukumura, S., Shimojo, S., & Nishio, S. "Effective Web Browsing Through Content

Delivery Adaptation", ACM Transactions on Internet Technology, Vol. 5, No. 4, 2005, pp. 571-600.

[16] Pravalpruk, B., Supnithi, T., Tummarattananont, P., & Mekpiroon, O. "Environment Model for Adaptive e-

Learning", Digital Learning, 2006, Available: http://digitallearning.eletsonline.com/2006/11/environment-

model-for-adaptive-e-learning/, Accessed: 16 February 2012.

