
Malaysian Journal of Computer Science, Vol. 12 No.1, June 1999, pp. 47-54

47

AN APPROACH TO THE DEVELOPMENT OF HYBRID OBJECT-ORIENTED DESIGN TOOL

Augustina Aegidius Sitiol
Faculty of Computer Science and Information Technology

University of Malaya
50603 Kuala Lumpur, Malaysia

email: wga98031@fsktm.um.edu.my
Fax: 603-7579249

Sai Peck Lee
Faculty of Computer Science and Information Technology

University of Malaya
50603 Kuala Lumpur, Malaysia

email: saipeck@fsktm.um.edu.my
Fax: 603-7579249

ABSTRACT

The design and development of systems are confronted with
objects involving a great variety of notations [1]. Objects
identified within the problem can be represented in the
software solution. Thus object design methods involve
constructing an object-oriented model of the problem and
mapping this model into a software design [2]. In this
paper, Hybrid Object-oriented Method (HOOM) [3] is
chosen whose concepts and techniques will be introduced
briefly. HOOM is an object-oriented software development
methodology [3] with graphical notations1 representing
object-oriented concepts. HOOM focuses on modeling of
objects. The use of CASE tools could improve the ability to
generate timely, quality software [4] using HOOM. CASE,
which is an abbreviation for Computer-Aided Software
Engineering, is a technology to automate software
development. The need for a development of a new CASE
tool, ODT (Hybrid Object-oriented Design Tool) to
construct the object diagrams and other diagrams is
defined. In contrast to many of the currently available
tools, this project is intended to encourage the use of
HOOM. Mapping of objects to a common form for
integration of the represented knowledge and consistency
checking is described.

Keywords: Object-oriented method, CASE tool,
Graphical tool, Mapping, Consistency
checking, Code generation, Document
generation

1.0 INTRODUCTION

Many Meta-CASE and CASE tools [5, 6, 7] like MetaEdit
[8], MOOT [9], Graphical Designer, Paradigm Plus [10],
etc. vary considerably in their functionality and design [7,
11]. CASE tools evaluations have revealed a number of
shortcomings in many of the existing tools in use today.
Areas have been identified which require improvement to
meet the dynamic nature and growth of the object-oriented
paradigm. These include lack of integration between

1 Notations are textual and diagrammatic. Textual notations have
syntax describing them and are ‘structure edited’. Diagrammatic
notations involve networks of nodes and links with predefined
graphical presentations and supported by diagramming operations
that respect appropriate connectivity rules.

specification tools and construction tools, lack of support
for specifying new methodology knowledge, support of a
few specific methodologies, lack of customization facilities,
and lack of inheritance between the methodologies
supported by the tool [10].

The major concern in HOOM and other object-oriented
development methodology [3, 12] is also to present an
efficient method to detect requirement errors and verify
consistency. Consequently, they frequently meet fallacy
such as omissions or wrong input of required information
[12].

Theoretically, code generation is possible with any method.
Under most methodologies, however, once the code has
been generated, it is separated from the analysis model, and
any changes to the application must be made to the code
itself [4, 13]. Most of the present code generating CASE
tools generate code from only the object model [14]. Most
of the present code generating CASE tools consist of header
files [11, 15] containing declaration of classes of the
application. To make the application executable, the
developer has to convert the dynamic models2 and
functional models into code and combine it with the code
that is generated from the object model [14].

It is found that many tools do not support document
generation. Typically, a tool that supports document
generation would allow the developer to write a script in
some scripting language to extract pieces of the model into
files for incorporation into document. Unfortunately, the
diagrams and text so extracted are often totally
unformatted, so the developer is forced to repair the result
with a word processor [4].

Several objectives motivated this project. First, to create a
graphical tool that would be flexible enough to be used for
mapping the design of HOOM’s structural model and
dynamic model into Java code and assures consistent
naming of objects. Second, automatic code generation in
Java code [16, 17] can be produced from the object diagram
designs. Third, the enforcement of error detection and
consistency checking between the diagrams is guaranteed
and verified. Finally, the tool should have the ability to do

2 Dynamic model describes the flow of control and interactions
among objects.

Sitiol and Lee

48

automatic generation of design documentation from the
model.

The aim of this project is to construct a usable CASE tool,
ODT (Object-oriented Design Tool), which will provide a
framework3 within HOOM. ODT will provide mapping
process from the notations to the descriptions. In order to
develop ODT it is necessary to understand HOOM and its
graphical notation.

2.0 OVERVIEW OF HYBRID OBJECT-
ORIENTED METHOD (HOOM)

HOOM is simple by only using four diagramming
techniques. HOOM is also programming language
independent which gives flexibility to implementers and
provides portability of design deliverables across language.
It is complete by the fact that it has taken and refined the
best features of most of the well established object-oriented
methods.

HOOM model was defined as grounded on four facilities.
These facilities are the four diagramming techniques, the
software development process, the system design
architecture and the class specifications.

2.1 Diagramming Techniques

A diagramming technique (i.e. notation) is normally
described by means of its syntax (i.e. how it looks),
semantics (i.e. what it means) and pragmatics (i.e.
guidelines and heuristics for its development) [3].

A system in HOOM is described from two different
aspects: structural model and dynamic model. Structural
model describes the objects in the system and their
relationships and the dynamic model describes the flow of
control and interactions among objects. The four
diagramming techniques capture both the structural and
dynamic aspects of the system. Class Relationship
Diagram (CRD) and High Level Class Relationship
Diagram (HL-CRD) capture the structural aspect of the
system, whereas Object Interaction Diagram (OID) and
State Transition Diagram (STD) capture the dynamic aspect
of the system. Each diagram is described briefly.

2.1.1 Class Relationship Diagram

The Class Relationship Diagram (CRD) is a formal graphic
notation used to capture the structure of the system by
showing its abstractions in terms of classes with
characterizing properties and the relationships between
them. It is the core technique of HOOM that it is concise,
easy to understand and works well in practice.

3 Framework provides the infrastructure, the architectural
guideline and a mechanism for reliably extending functionality
[18].

In a CRD, a box having three compartments represents a
class as shown in Fig. 1.

Fig. 1: Graphical Representation of a Class in CRD

The first compartment contains the name of the class.
Elements in the square brackets are optional. The
specification of {Abstract} indicates that the class is
abstract. The specification of <<Parameters>> indicates
that the class is generic. The specification of <arguments>
indicates that the class is instantiated from a generic class.

The symbol “ | ” represents that a class can only either be
an abstract class, a generic class or an instantiated class, if it
is not a concrete class. The “ … ” indicates that the class
may have many attributes and operations.

The second compartment contains attributes declarations,
including a type (i.e. integer, character, real, string, etc),
the name of the attribute, an initial value, external visibility
and constraints.

The third compartment contains operations declarations,
including a return type followed by the symbol “ ß ”
which is used to separate between the name of the operation
and the return type, the name of the operation, a list of
parameters and their types, the operation type, external
visibility and constraints. An empty parameter list within
parenthesis shows the operation has no parameters, or that
no decision has yet been made about the parameters.

2.1.2 High Level Class Relationship Diagram

The High Level Class Relationship Diagram (HL-CRD)
shows dependencies between loosely coupled clusters. A
cluster is a sub-CRD containing a set of cohesive classes
and the relationships between them. A whole CRD of a
complex system consists of one or more clusters, which
divide it into manageable pieces. The names of classes and
associations must be unique within their enclosing cluster.
A HL-CRD is drawn to show dependencies between
loosely coupled clusters as shown in Fig. 2.

A box in bold illustrates a cluster. A line between the
related clusters and writing a {S} beside the server cluster
represents a using relationship. A double arrow represents
an association, names of the related classes are written
beside the double arrow. A layer represents a collection of
clusters at the same level of abstraction.

Class name [{Abstract}]|[<<Parameters>>]|[<Arguments>]

[Return type ß] Operation name [(Type1 Par1, …, Typen Parn)]
[{Operation type}][{External visibility}][{Constraints}]
[,]…

[Type] Attribute name [=Initial value][{External visibility}]
[{Constraints}]
[,]…

An Approach to the Development of Hybrid Object-Oriented Design Tool

49

Fig. 2: Diagramming Elements of HL-CRD

2.1.3 Object Interaction Diagram

The Object Interaction Diagram (OID) shows the
interactions among a set of objects during one particular
execution of the system. It represents a snapshot in time of
a stream of messages over certain configuration of
interacting objects. It is also used to trace the execution of
a scenario, which is a sequence of messages passed
between objects during one particular execution of a
system. In an OID, objects are represented in boxes and the
message passing by arrows from the client object to the
server object as shown in Fig. 3.

Fig. 3: Diagramming Elements of OID

2.1.4 State Transition Diagram

The State Transition Diagram (STD) shows the evolution of
objects of a class that exhibits an important dynamic
behavior in response to interactions with other objects as
shown in Fig. 4.

Fig. 4: Diagramming Elements of STD

A state is depicted by a rounded box. It contains the name
of the state, an indication in braces of whether it is a start
state, a stop state or a nested state, the event causes the
entrance to the state if it is a start state, activities preceded

by the keyword Ac: and recursive transitions (i.e.,
transitions from a state to itself).

An arrow from one state to another illustrates a transition.
A transition is a state change caused by the occurrence of
an event. The name of the event, any condition on the
event, the symbol “ à ” separating the event and the action,
the resulting action with its arguments and its
corresponding operation are labeled on the arrow.

2.2 Software Development Process

The HOOM analysis models (i.e. HL-CRDs, CRDs, OIDs
and STDs) aim to give the system a robust and changeable
class structure. During the design phase, the analysis
models are refined and enhanced and implementation
decisions are made. In the implementation phase, the
system will be implemented in the platform.

HOOM software development process describes how, with
the help of the diagramming techniques, models of different
systems can be created. Specific system design architecture
is therefore the result obtained after applying the software
development process to a system.

HOOM iterative and incremental software development
process encompasses three phases: analysis, design and
implementation. Each phase is performed in many
activities. The order of the steps in each activity needs not
be strictly followed, it is rather flexible depending on the
nature of the project at hand.

HOOM software development process has taken and
refined the best features of existing object-oriented methods
and has focused on the analysis phase, which has the most
important impact on the whole development process. The
analysis deliverables will be smoothly mapped into the
design and implementation phases since there is no new
diagramming techniques used in these phases.

2.3 System Design Architecture

HOOM system design architecture (SDA) was inspired
from the model-view-controller (MVC) developed by the
Smalltalk community [3]. The central purpose of SDA is
using the analysis models as the heart of the design model.

Cluster-1

Cluster-3Cluster-2 Cluster-4

Cluster-5

{S}
{S}

{S} {S}

{S}

[Link class 1] [Link class 2]

Layer 1

Layer 2

Layer 3

[Event
[{Condition}] à]
[Action
[(Arguments)]
[Operation]]

[State
name][{Start}]
[{Stop}][{Nested}]
[Event if a start
state]

[State
name][{Start}]
[{Stop}][{Nested}]
[Event if a start
state]

Act = Active Object

Synchronization = {S} (Synchronous), or {B} (Balking), or
 {T} (Time-out), or {A} (Asynchronous)

Message = [Return type ß] Operation name [(Arguments)][{Operation
 sequence number}][{Synchronization}] [{Visibility}][{Constraints}]

Name of the
client class

[{Act}]

Name of the
server class

[{Act}]

Message

Sitiol and Lee

50

HOOM is using the same graphical notation in analysis and
design. The ability to build compact system design
architecture is greatly enhanced. Moreover, one of the
principal goals of object-oriented software development is
to improve the reusability of software components.
Increase reusability of software is considered as a crucial
technical pre-condition to improve the overall software
quality and reduce production and maintenance costs.
Analysis is concerned with what the system under
development is intended to do, whereas design is concerned
with how the requirements will be implemented. One of
the main objectives of design is to introduce consistency
and predictability into the software development process.

3.0 DEVELOPMENT APPROACH OF ODT

Object-oriented analysis and design methodologies and the
use of CASE technology are extensive in the object-
oriented world. One important role of a CASE tool is to
serve as a methodology companion [11, 15], i.e. to assist
and guide the developer through a particular systems
development methodology.

The level of assistance that will be provided by ODT for
HOOM includes a graphical tool, error detection and
consistency checking, Java code generation and document
generation to support the diagramming techniques.

3.1 Overview

The development activity of ODT consists of five steps:
modeling, formalizing, verifying, code generating and
document generating which are depicted in Fig. 5.

In the modeling step, the system is analyzed and two
models are produced: the structural model and the dynamic
model. Structural model consists of CRD and HL-CRD,
whereas dynamic model consists of OID and STD. ODT
will generate Java code directly from the models.

In the formalizing step, these two models are transformed
into Atomic Formulae. These models are stored into a
Design Specification Language (DSL). DSL is created to
provide a textual representation in the form of Atomic
Formula of the models. In the verifying step, the rules for
error detection and consistency check from a Rule
Specification Language (RSL) are applied to check the
errors and consistency of the models. In case that an error
is detected, the modeling steps, formalizing step and
verification step are repeated until the models are
consistent.

In the code generating step, the mapping of the models will
be translated to Java code. In the document generating
step, reports of the models will be generated.

Fig. 5: Development Method of ODT

3.2 Mapping of the Models

The mapping of the models is specified. A graphical editor
(GE) will be designed with the intention to support the
creation of models and can be easily maintainable.
Although some CASE tools already map the notations of
various object-oriented methods [5, 8, 11, 19, 20], this has
not been done for HOOM. In addition, HOOM is taken in
order to create an architecture, which will be easily
maintainable and could be extended easily.

A graphical approach should be used in order to take
advantage of the diagramming techniques of HOOM.
Using this approach also makes GE useful as an educational
aid [21, 22] in the development of object-oriented
applications, as it will allow novice to create models. GE
will facilitate diagramming specification of the system,
rather than having to express the system specification in a
textual format [20]. The diagramming techniques of
HOOM will be captured graphically and mapped to the
framework using Java.

The mapping from the models to Java can be described as
follows:

• HOOM classes will be mapped to Java classes
• HOOM operations will be mapped to Java

methods

Modeling
Modify

Formalizing

Verifying

Document Generating

Code Generating

User’s Requirements

Consistent Structural Model
and Dynamic Model

Dynamic ModelStructural Model

HL-CRDCRD STDOID

Rule Specification
Language (RSL)

Design Specification
Language (DSL)

An Approach to the Development of Hybrid Object-Oriented Design Tool

51

• HOOM interfaces will be mapped to Java
interfaces

• HOOM inheritance can be implemented in Java
through the extends and implements relationships

• Other kinds of associations and relationships in
HOOM can be implemented by
reference/composition of an object within another

• HOOM processes will be mapped to Java
processes.

3.3 Formalizing with Atomic Formulae

Graphical forms cannot be understood by the system
directly. That means error detection and consistency check
of graphical models cannot be automated. Therefore, the
formal specification of the models is required. The
contents of the models will remain intact, which is very
important [12, 23, 24].

In this section, formalizing the models will be explained in
the form of Atomic Formulae. The Atomic Formula is a
name – a predicate – followed by zero or more arguments
enclosed in parenthesis and separated by commas.

3.3.1 Formalizing the Structural Model

3.3.1.1Class Relationship Diagram

The class can be represented as in Expression 1. Attribute
and operation in Expression 2 and Expression 3.

Expression 1:
Class (class name, [kind], [parameters or arguments],
[attributes], [operations])

Expression 2:
Attribute (attribute name, [type], [initial value], [external
visibility], [constraints])

Expression 3:
Operation (operation name, [return type], [type
parameters], [operation type], [external visibility],
[constraints])

There are four ways which the relationship is specified;
associations, inheritance, composition and instantiation.
The relationship can be represented as in Expression 4,
Expression 5, Expression 6 and Expression 7.

Expression 4:
Association (association name, first associated class,
second associated class, [first cardinality], [second
cardinality], [first role name], [second role name],
[direction])
Expression 5:
Inheritance ([subclass], [superclass])

Expression 6:
Composition (composite class, component class,
[cardinality of component], [kind of composition])

Expression 7:
Instantiation ([instantiated class], [generic class])

3.3.1.2High Level Class Relationship Diagram

The cluster can be represented as in Expression 8. There
are two ways by which the relationship is specified; using
and association. The relationship can be represented as in
Expression 9 and Expression 10.

Expression 8:
Cluster (cluster name, [global], [enclosed classes])

Expression 9:
Using (client cluster, server cluster)

Expression 10:
ClusterAssociation (first associated cluster, second
associated cluster, [first link class], [second link class])

3.3.2 Formalizing the Dynamic Model

3.3.2.1Object Interaction Diagram

The object can be represented as in Expression 11.

Expression 11:
Object (object name, [concurrency])

The message can be represented as in Expression 12.

Expression 12:
Message passing (client object, server object, [signature],
[sequence number], [synchronization], [visibility],
[constraints])

3.3.2.2State Transition Diagram

The state can be represented as in Expression 13.

Expression 13:
State (state name, [kind], [event if start], [activity],
[reflexive transitions])

The transition can be represented as in Expression 14.

Expression 14:
Transition (source state, destination state, [event],
[condition], [action], [operation])

3.4 Error Checking and Consistency Checking

Models are the basic building blocks of the generated
product. Thus, good consistency checking [4, 25] is very
important to ensure the reliability of the system. Methods

Sitiol and Lee

52

will be developed to perform the verification of consistency
between diagrams and assure for consistent naming of
objects and methods.

The development of the structural model precedes that of
the dynamic model. The HL-CRD, OID and STD are
dependent on the CRD. The dependency is closely related
to consistency principles [12].

The rules for checking errors in the structural model are as
follows:

Rule 1
A class must be unique. Another class with
the same identification is not acceptable.

Rule 2
An attribute must be unambiguous in the
context of the class and must be unique
within the class.

Rule 3
An instantiated class cannot have more than
one generic class.

Rule 4 An instantiated class cannot be generic.

Rule 5
Cycles are not allowed in inheritance,
composition and association relationships.

Rule 6

Inheritance and composition, inheritance
and association, composition and
instantiation, association and instantiation
are not allowed at the same time between
two classes.

Rule 7
The names of the classes and associations
must be unique within their enclosing
cluster.

Rule 8
Inheritance and composition relationships
are not transitive.

Rule 9
All the enclosed classes of a cluster in the
HL-CRD must exist in their related CRD.

The rules for checking errors in the dynamic model are as
follows:

Rule 10
An activity in a state must be completed
before an event causes a transition from
that state.

Rule 11
Any state except the terminal state must
have at least a transition to other states.

Rule 12
Each state must be unique within its
enclosing class.

Rules for checking consistency between the structural
model and the dynamic model are as follows:

Rule 13
All the classes of objects in an OID must
exist in their related CRD.

Rule 14

If a relationship of association exists
between classes, there must be a
communication path between the state
diagrams that describe the behavior of these
classes.

Rule 15
In OID, an operation performed by a server
object must exist in its class or in one of its
ancestor classes in its related CRD.

Rule 16

In STD, all the actions and activities must
exist as operations in their class in the
related CRD, otherwise a warning is
reported.

These 16 rules above will be programmed in Java and will
be stored in Rules Specification Language (RSL).

3.5 Code Generating with Java

Java language has been chosen as the intermediate
languages, object-oriented programming is facilitated [26,
27]. From the software diagram, the tool generates the Java
code required to interconnect these components [28]. Java
code will be generated automatically from the diagram and
assures consistent naming of member functions and
attributes.

The tool will use the structural models associated with each
class operation to generate a complete method function
implementation for the operation in Java. The class
dynamic models will also be generated. There will be
extensive consistency checking at each stage.

3.6 Document Generating

Generating documents was not a single button operation
[4]. The functionality of the document generation will be
integrated directly into the tool rather than adding it on via
scripts. Reports on the diagrams will be automatically
generated.

4.0 CONCLUSION

This paper introduces ODT, a CASE tool for an object-
oriented method that will be able to provide a framework
for HOOM. This is also to encourage the use of this
methodology as an educational aid. ODT with the usage of
HOOM is applied mainly in order to gain better control of
the development activities.

An Approach to the Development of Hybrid Object-Oriented Design Tool

53

There are five steps described in constructing ODT for
HOOM: modeling, formalizing, verifying, code generating
and document generating. GE for use in design mapping
will support the creation of models in the modeling step.
The models then will be formalized in Atomic Formulae
expressions in the formalization step. DSL is used to store
the expressions. In the verifying step, the enforcement of
consistency checking is described. Rules for checking
errors and consistency have been identified in RSL. This is
to ensure the reliability of the system. In code generation
step, a complete method function for the operation of Java
will be generated automatically from the models. In the
document generation step, reports of the models will be
generated.

REFERENCES

[1] W. Cyre, “Mapping Design Knowledge from
Multiple Representations”. Proceedings of IEEE
International Conference on Computer Design:
VLSI in Computers and Processors, 1991.

[2] J. Daniels, “Object Design Methods and Tools”.
IEE Colloquium on Distributed Object Management,
pp. 3/1–3/3, 1994.

[3] T. Taibi, “Hybrid Object-Oriented Method (HOOM)
for Object-Oriented Software Development”.
Master Thesis, Faculty of Computer Science and
Information Technology, University of Malaya,
1998.

[4] T. Church and P. Matthews, “An Evaluation of
Object-Oriented CASE Tools: The Newbridge
Experience”. Proceedings of the Seventh
International Workshop on CASE, 1995.

[5] A. Alderson, J, Cartmell and T. Elliot, “The
Concepts Underlying a Meta-CASE Tool”.
Technical Report SOCTR/97/02, School of
Computing, Staffordshire University, 1997.

[6] A. Van Hoff, “The Case for Java as a Programming
Language”. IEEE Internet Computing, Vol. 1, No.
1, pp. 51-56, 1997.

[7] S. C. Stobart, A. J. Van Reeken, G. C. Low, J. J. M.
Trienekens, J. O. Jenkins, J. B. Thompson and D. R.
Jeffery, “An Empirical Evaluation of the Use of
CASE Tools”. Proceedings of the Sixth
International Workshop on Computer-Aided
Software Engineering, 1993.

[8] MetaCase Consulting Oy, “MetaEdit Personal 1.2
User Manual”. MetaCASE Consulting, 1995.

[9] D. Page, D. Griffin, L. Usherwood, and D.
Mehandjiska, “Implementation of Semantic
Specification Language Interpreter for a
Methodology Independent OO CASE Tool”.
Proceedings of the IASTED International
Conference Software Engineering (SE ’97),
November 2-4, 1997.

[10] D. Mehandjiska, D. Page, D. Griffin and L.
Usherwood, “The Methodology Representation
Mechanism of an Object-Oriented MetaCase Tool”.
Proceedings of the IATED International Conference
Software Engineering (SE ’97), November 2-4,
1997.

[11] D. J. Jankowsi, “CASE Tool Selection”. Journal of
Systems Management, Cleveland, Vol. 46. Issue 4,
July/August 1995.

[12] D. Kim and K. Chong, “A Method of Checking
Errors and Consistency in the Process of Object-
Oriented Analysis”. Proceedings of 1996 Asia-
Pacific Software Engineering Conference, 1996.

[13] E. Heichler, “Development Tools Take on Code
Generation”. Computerworld, Framingham, Vol.
29, Issue 18, May 1, 1995.

[14] J. Ali and J. Tanaka, “Generating Executable Code
from the Dynamic Model of OMT with
Concurrency”. Proceedings of the IATED
International Conference Software Engineering (SE
’97), November 2-4, 1997.

[15] Spectrum Staff, “The Case for CASE Tools”. IEEE
Spectrum, Vol. 27, Issue 11, pp. 78-81, 1990.

[16] A. Walsh and J. Fronckowiak, “Java Bible”. IDG
Books Worldwide, Inc., 1998.

[17] B. Maso, “Visual J++ 6 the Ground Up”. McGraw-
Hill Companies, 1999.

[18] K. K. Dong, T. J. Hyo andK. K. Chae, “Techniques
for Systematically Generating Framework Diagram
Based on UML”. Proceedings of the Asia Pacific
Software Engineering Conference, pp. 203-210,
1998.

[19] N. C. Shammas, “Teach Yourself Visual C++ in 21
Days”. SAMS Publishing, First Edition, 1993.

[20] V. K. Shanbhag and K. Gophinath, “A C++
Simulator Generator from Graphical Specifications”.
Software – Practice and Experience, Vol. 27 (4), pp.
395-423, April 1997.

Sitiol and Lee

54

[21] F. Dicesare, M. R. Gile and P. T. Kulp, “An Object
Oriented Graphical Tool for Creating Petri Nets”.
Proceedings of the Fourth International Conference
on Computer Integrated Manufactruing and
Automation Technology, 1994.

[22] J. J. Swhwarz, J. J. Skubich, P. Szwed and M.
Maranzana, “Real Time Multitasking Design with a
Graphical Tool”. Proceedings of the IEEE
Workshop on Real Time Application, 1993.

[23] A. Arnold, D. Begay and J. Radoux, “The
Embedded Software of an Electricity Meter: An
Experience in Using Formal Methods in an
Industrial Project”. Science of Computer
Programming, Vol. 28, pp. 93-110, 1997.

[24] D. Dzierzgowski and E. Gregoire, “Formalizing
Software Development Methods”. Design:
Concepts, Methods and Tools: CompEuro ’88, pp.
230-239, 1988.

[25] S. Kouno, H. Chang and K. Araki, “Consistency
Checking between Data and Process Diagrams
Based on Formal Methods”. Proceedings of the
Twentieth Annual International Computer Software
and Applications Conference: COMPSAC ’96, 1996.

[26] A. Van Hoff, “The Case for Java as a Programming
Language”. IEEE Internet Computing, Vol. 1 No. 1,
pp. 51-56, 1997.

[27] C. H. Soo, “A Visual Tool for C++ Program
Development”. Proceedings of the TENCON ’93.
IEEE Region Ten International Conference on
Computers, Communications and Automation, 1993.

[28] R. Janka, “Graphical Tools Enhance Productivity”.
Electronic Engineering Times, Manhasset, Issue
961, July 7, 1997.

[29] K. Arnold, “Why C++?” UNIX Review, Mercer
Island, February 1992.

[30] K. diamond and K. Pang, “Mapping VHDL
Descriptions of Digital Systems to FGPAs”. IEE
Colloquium on Software Support and CAD
Techniques for FGPAs, pp. 9/1-9/3, 1994.

[31] D. Mulvaney and C. Bristow, “A Rule-based
Extension to the C++ Language”. Software –
Practice and Experience, Vol. 27(7), pp. 747-761,
July 1997.

[32] M. A. Rodrigues, C. Loftus, M. Ratcliffe and Y. F.
Li, “Structure Notation of Dynamic Systems: A
Pictorial Language Approach”. Proceedings of the
1994 International Conference on Computer
Languages, pp. 219-228, 1994.

[33] J. Parsons, “Choosing Classes in Conceptual
Modeling”. Association for Computing Machinery,
Communications of the ACM, New York, June 1997.

[34] P. Lang, W. Obermair, W. Kraus and T.
Thalhammer, “A Graphical Editor for the
Conceptual Design of Business Rules”. Proceedings
of the Fourteenth International Conference on Data
Engineering, 1998.

[35] W. Savitch, “Problem Solving with C++, The Object
of Programming”. Addison-Wesley Publishing
Company, Inc., 1996.

[36] D. Xu, “Towards an Object-Oriented Logic
Framework for Knowledge Based Systems”.
Knowledge-Based Systems, Vol. 10, pp. 351-357,
1998.

[37] I. A. Zualkernan and R. S. Ordower, “Towards
Automating Object-Oriented Analysis”.
Proceedings of the Eighteenth Annual International
Computer Software and Applications Conference
(COMPSAC ’94), p. 103, 1994.

[38] F. N. Kesim, Member, IEEE Computer Society and
M. Sergot, “A Logic Programming Framework for
Modeling Temporal Objects”. IEEE Transactions
on Knowledge and Data Engineering, Vol. 85, pp.
724-741, October 1996.

[39] B. Stahl and A. Jansen, “A Conceptual Mapping of
the GSM12.20 Managed Objects Templates Defined
in ASN.1 Into an Entity-Relationship Datamodel”.
Proceedings of the International Zurich Seminar on
Intelligent Networks and Their Applications, Digital
Coomunications, pp. E5/1-E5-17, 1992.

[40] E. V. Kortright, “Modeling and Simulation with
UML and Java”. Proceedings of the 30th Annual
Simulation Symposioum 1997, pp. 43-48, 1997.

[41] F. Huber, A. Rausch and B. Rumpe, “Modeling
Dynamic Component Interfaces”. Proceedings of
the Technology Object-Oriented Languages (TOOLS
26), pp. 20-32, 1998.

BIOGRAPHY

Augustina Aegidius Sitiol is currently pursuing her Master in
Computer Science program in the Faculty of Computer &
Information Technology, Universti Malaya.

Sai Peck Lee obtained her Master of Computer Science from
University of Malaya in 1990, D.E.A of Computer Science
from University of Paris VI Pierre et Marie Curie in 1991 and
Ph.D of Computer Science from University of Paris I
Pantheon-Sorbonne in 1994. She is a lecturer at Faculty of
Computer Science and Information Technology, University of
Malaya.

