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ABSTRACT 

 
Process mining (PM) techniques are increasingly used to enhance operational procedures. However, applying PM to 

unstructured processes can result in complex process models that are difficult to interpret. Trace clustering is the 

most prevalent method for handling this complexity, but it has limitations in dealing with event logs that contain many 

activities with varied behaviours. In such cases, trace clustering can produce inaccurate process models that are 

expensive in terms of time performance. Therefore, it is crucial to develop a trace clustering solution that is optimal 

in terms of behavioural and structural quality of process models while being efficient in terms of time performance. 

In this study, we introduce a refined trace clustering framework with an integration of log abstraction and 

decomposition technique that improves the precision of process models by 38%, leading to a 40% increase in the f-

score. The proposed framework also produces process models that are 38% simpler than those produced by baseline 

approaches. More importantly, our framework achieves a remarkable 89% improvement in time performance, making 

it a valuable contribution to the field of process mining. Future works include exploring the scalability of the proposed 

framework against a wider range of complex event logs and testing the framework to validate its effectiveness in 

practical applications. 
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1.0. INTRODUCTION 

 
Process mining (PM) combines data mining and business process management (BPM) techniques to analyse and optimize 

business processes. The basis of such analysis is the event logs generated by the information systems. With event logs in 

hand, process mining starts with process discovery [1], [2], a sub-type of process mining used to discover the visual 

representation of processes called process models [3],[4].  The discovered process models are then used for the 

identification of process inefficiencies, their root causes, and their impact on key performance metrics. Process discovery 

is the basis of subsequent process mining techniques, i.e., process conformance checking and process enhancement [1]. 

Given that processes are initially modelled using process discovery techniques, it follows that incorrect process discovery 

would produce inaccurate results for the subsequent process analysis. Therefore, valid process discovery is essential to 

reach a valid conclusion about process performance and compliance.  

Traditionally, process discovery works very well for structured processes. However, real-world processes are not 

straightforward and contain flexible and ad-hoc behaviours. Application of process discovery on such unstructured 

processes results in complex process models, which introduces the challenge of interpreting process models [5]–[7]. An 

example of such scenarios is the process of an organization where no restriction is imposed on the order of activities to 

follow. In case of such a flexible process, employees may use any sequence and combination of activities. When such a 

process is executed, it generates a variety of process execution traces with an arbitrary number and order of activities. 

Such a flexible process is referred to as complex or unstructured process in process mining. Applying process discovery 

on such event logs produces a spaghetti-like representation called complex process model [8]–[10]. 

According to [11] and [12], as cited in [13], the complexity and density of a process model are known to have an impact 

on a human analyst's capacity to comprehend it. Therefore, to understand and improve the process, the resulting process 

models should not be overly complex. The complexity issue has been addressed by several researchers using four primary 

approaches, clustering, abstraction, filtration, and pattern mining; however, trace clustering is the most popular approach 

[14]. Abstraction approach can simplify complex event data by reducing the size of event logs and focusing on important 

aspects of the process [15]. However, using abstraction approach ignores less frequent behaviours and the experience of 

the abstractor also influences the results [16]. A lot of candidate patterns are generated by such a method, which makes 
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it an expensive approach for managing complexity. Filtration approach deals with complexity using the notion of noise 

in the event log [17], [18]. By removing noise, a reduction in the size of event logs is observed, thereby making the 

analysis of the process more manageable. However, throughout process mining literature the notion of noise is typically 

attributed to less frequent activities in the event log and the use of filtration approach discards such infrequent activities 

[14]. Commonly, non-compliant behaviours occur infrequently; therefore, removal of infrequent behaviour also implies 

complicating the detection of incompliant behaviours and thereby threatening the validity of the subsequent process 

mining step such as conformance checking. On the other hand, pattern mining approaches can help in understanding the 

behaviour of the process by focusing on specific patterns [19], however, they depend on the modeler's decision to include 

or exclude specific behavioural patterns and are only practical when end-to-end model discovery is not a concern [14]. 

In the Trace clustering approach traces with similar behaviours are grouped together into clusters, providing a way to 

reduce the size of event logs and focus on important aspects of the process. Compared to other approaches, trace 

clustering techniques are superior in terms of retaining maximum possible behaviour in the event log, and all behaviours 

are included in process discovery regardless of it being frequent or infrequent [14]. In the trace clustering approach, 

process instances are divided into clusters based on the features of process instances. Such features are referred to as 

“trace profiles” [20]. For each set of profile-specific clusters, a sub-model is generated which is simpler than a single and 

all-inclusive process model. The quality of such process models is commonly evaluated using two dimensions, 

behavioural complexity, and structural complexity [14]. Behavioural complexity consists of fitness, precision, and f-

score metrics, where fitness is used to measure the capability of the process model to replay the behaviours found in the 

event log while precision quantifies the specificity and accuracy of the process model. On the other hand, structural 

complexity is used to assess the complexity and the simplicity of the resulting process models. A process model with low 

precision contains highly generalized behaviour which does not exist in reality. Since there exists a trade-off between 

fitness and precision, having an optimal balancing between two is a desired characteristic [21], [22].  

An extensive literature review of the complexity issue [14] and the experimental evaluation reveals that existing trace 

clustering approaches help reduce the model complexity when event logs contain trace level variation. However, when 

the event log contains a high number of activities with varying behaviours, trace clustering does not help reduce the 

complexity of process models; instead, some level of improvement in fitness quality is observed. Secondly, such 

techniques remain expensive in terms of time performance. Improving just the fitness or precision quality is not enough 

rather striking a balance between these two model quality metrics is essential [22]. This problem is prevalent throughout 

the process mining literature [14], [15], [23]. Therefore, there is a need and scope for trace clustering techniques that 

generate simpler process models, and along with the fitness, the precision of process models is also improved. Finally, 

considering the expensiveness of the existing approaches, it is also important that the resulting trace clustering technique 

performs efficiently.  

Keeping in view the identified limitations, we present an enhanced trace clustering framework that not only produces 

more precise but also yields simpler process models. Furthermore, the proposed framework exhibits a notable time 

reduction of 31 minutes in comparison to the two baseline studies [20] and [24], which required 201 minutes and 306 

minutes respectively. Consequently, the proposed framework not only enhances the overall performance but also 

significantly improves the time efficiency of the trace clustering solution. The rest of the paper is structured as follows:  

In section 2, we present the basic terminologies, a background of complexity issue in process mining, the motivation 

behind trace clustering, and related works. In section 3, the proposed trace clustering framework is presented. In section 

4, the experimental setup is elaborated. In section 5, the results are presented while in section 6, the significance and 

implications of results are discussed along with the limitations of the proposed framework. Finally, in section 7, we 

conclude our findings.  

 

2.0. BACKGROUND AND RELATED WORK  

In this section, we first present the background of the complexity issue in process mining. Then, the basic terminologies 

used throughout the article are elaborated. Later the trace clustering concept and the related trace clustering techniques 

used for complexity reduction are discussed in the related works sub-section. 

The information systems of an organization execute business processes. These business processes leave their footprints 

as event logs [25]. Process mining techniques use such event logs to discover the actual execution of the business process. 

The extracted business process models are then used for several purposes, such as checking the compliance of business 

processes against standard operating procedures and finding process optimization opportunities [26]. The real-world 

processes are not straightforward, as they are characterized by flexibility. Execution of such processes results in varying 
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process behaviours recorded in the event logs. In process mining domain, such flexible processes are referred to as 

complex or unstructured processes [14]. Application of process mining over such processes results in so-called spaghetti 

process models, which are imprecise on the one hand and challenging to comprehend as well [27].  

Researchers have put forward several strategies to deal with complexity problem. These strategies include changing the 

abstraction level of the event logs [28], behavioural filtration [29], restriction of process discovery to specific behavioural 

patterns [30] and clustering of process instances into sub-logs [31]. The clustering approach, however, has a significant 

advantage in retaining maximum information and considers all behaviours as observed in the event log [14].  

2.1 Basic terminologies  

2.1.1 Event  

An event is a tuple that represents a single activity executed in a process. Each event tuple may contain an activity name, 

human or machine resource involved in activity execution, and the timestamp of its execution. In the event log of an 

example process in Table I, each row represents the execution of an event which contains an activity name, the human 

or machine resource who performed the activity, and the timestamp at which the activity was executed. The sample event 

log in Table I contains twelve events with five unique activities.  

2.1.2 Trace 

A trace or process instance is a footprint of single process execution. Each trace is a combination of multiple events. The 

traces are represented by a unique Case ID which acts as a unique identifier of the trace in the event log. The example 

event log shown in Table I contains three unique traces where trace “1” executed four events, trace “2” executed three 

events, and in the context of trace 3, five events were executed.  

2.1.3 Event log 

An event log is a collection of traces or process instances that denotes the multiple executions of the process. Each row 

of the event log represents an execution of an event. Table I depicts the sample event log containing three traces and 

twelve events executed by five employees between 1st December 2022 and 4th of December 2022. 

Table I. Event log of a sample product order and dispatch process 

Case ID Activity Resource Timestamp 

1 Receive order Emp 1 1-12-2022 11:00 

1 Check Inventory Emp 2 2-12-2022 09:17 

1 Check payment status Emp 3 4-12-2022 13:15 

1 Dispatch Emp 4 4-12-2022 14:45 

2 Receive order Emp 1 3-12-2022 17:01 

2 Check Inventory Emp 2 4-12-2022 12:25 

2 Cancel order Emp 5 4-12-2022 13:45 

3 Receive order Emp 1 1-12-2022 14:53 

3 Check Inventory Emp 2 2-12-2022 15:32 

3 Check Inventory Emp 2 3-12-2022 09:02 

3 Check payment status Emp 3 4-12-2022 16:25 

3 Dispatch Emp 4 4-12-2022 16:58 
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2.2 Trace clustering  

An event log contains varying process execution behaviours where some behaviours are homogenous such as executing 

similar activity sequences [32]. On the other hand, heterogenous behaviours also exist where some of the process 

execution behaviours remain dissimilar to others [33]. In sample trace <ABDCE>, activity “A” is directly followed by 

B and contains five activities. In another sample trace <ADBCE>, activity “A” is directly followed by activity “D” and 

contains a total of five activities. The directly-follows relation between two activities is an example of process execution 

behaviour. Both traces have the same number of events; therefore, they would be placed in the same cluster if the 

clustering criterion were based solely on this metric. However, if the context of activity execution behaviours is included, 

such as which activities follow activity A, both the traces fall into separate categories because of heterogenous 

behaviours. In this way, traces can be clustered into smaller groups based on a wide variety of such characteristics to 

reduce the complexity of the process models.  

Real-life processes may contain several different process execution behaviours. Generating a single process model from 

an event log that contains high variation results in a spaghetti-like representation, which adds to the model’s complexity. 

[34]. Therefore, based on the characteristics of the traces, the event log is divided into groups of similar behaviours. Such 

a process of grouping traces based on similarity or dissimilarity is known as Trace clustering [35]. Fig. 1 represents the 

abstract concept of trace clustering based on feature profiles. 

Another motivation behind performing trace clustering is the fine-granular level of details about process execution in the 

event logs. Consider example trace <ABDDDCCGTFHYTJDDDIIIIIIMMMMYYYYYYYY> containing thirty-five 

activities.  Discovering process models from event logs of such fine-grained nature results in a model containing a high 

number of nodes and edges, which translates to the complexity of process models. Moreover, the variation among the 

traces introduces yet another level of complexity.  

 

 

Fig. 1. Trace clustering concept 
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2.3 Related works 

According to a comprehensive analysis of the available methods for simplifying complex processes, trace clustering is 

still the best option for process mining [14]. Some researchers concentrated on activity clustering, while others employed 

guided trace clustering and the trace-profiles-based clustering method. In the following, we present an overview of all 

three methods. 

In order to deal with fine-grained event logs, a trace segmentation approach was utilized [36].  The trace segmentation 

approach utilizes the concept of co-occurrence of activities, which refers to the high frequency of two activities appearing 

together in the event log. As an example, if activity A and C frequently occur together more frequently than activity G 

and Y, then activity A and C are considered segments of some higher level of activity and clustered together and later 

abstracted as a single activity to simplify complex process. In order to deal with the trace level variation, [35], [37], and 

[38] utilized the activity sequences to cluster the traces into homogenous subsets. A sequence of activities refers to an 

event log pattern where two or more than two activities occur together in a in a direct succession to each other. Such as 

in example event log [<A, B, C, D>2, <A, B, C, F, G, H, I, Z>20, <A, D, F, G, H, I,>7, <A, C, D, X>2 ], where the 

subscript number indicates the number of times a trace is found in the event log. It can be observed that the sequence “F, 

G, H, I” frequently appears in the event log with a frequency of 27 in the log (20 times in second trace variant and 7 times 

in third trace variant). Moreover, the sequence, “A, B, C” appears 22 times (2 times in first trace variant and 20 times in 

second trace variant). Therefore, more frequent sequences are abstracted into a single activity X as in <X, C, D>, <X1, 

X2, Z> to reduce the complexity.  Instead of co-occurrence or activity sequences, activity hierarchies were utilized for 

clustering the traces by [39]. Activity hierarchies are a way to organize activities in a process into a hierarchical structure, 

with high-level activities at the top and low-level activities at the bottom. These hierarchies can be useful for abstraction 

in process mining to guide the abstraction process [40]. In this form of abstraction, only high-level activities are focused 

on which are the result of the aggregation of multiple lower-level activities. For example, activities "receive order", 

"check inventory", and "process payment" are part of higher-level task activity called "order processing". So, these low-

level tasks are aggregated into single high-level activity to simplify the complex process [41]. Similarly, researchers in 

[42] also used activity hierarchies to conduct research, but their experiments focused on structured processes rather than 

unstructured ones. Attribute-based clustering was proposed in [43]; however, the authors did not perform an experimental 

evaluation of their method. Using the notion of time interval, researchers in [32] proposed grouping activities that 

occurred within brief time intervals to construct simpler models.  

In structured processes there are clearly defined sets of tasks or steps that need to be completed in a specific order. 

Examples of structured processes include manufacturing assembly lines, loan approval processes, and order processing 

systems. On the other hand, unstructured processes do not have a clearly defined set of tasks or steps, and they may 

involve a high degree of variability and uncertainty. These processes are often more flexible and adaptable than structured 

processes, but they can also be more difficult to manage and analyse. Examples of unstructured processes include 

customer service interactions and healthcare processes. The application of co-occurrence of activities [36], activity 

sequences [35], [37], [38], and activity hierarchies [39], [42] are well suited for structured processes where explicit 

hierarchies and explicit high-level counterpart is available. The research works have been mainly applied their 

methodology to processes that had a clear and well-defined set of tasks or steps to be completed. This contrasts with 

unstructured processes, which may not have a clearly defined set of tasks or steps, making them more challenging to 

analyse using traditional process mining techniques. 

In the context of guided clustering approaches, [44] and [45] proposed to cluster traces based on specific trace patterns 

that deviate from normal behaviour. Likewise, the researchers in [34] employed a set of constraints over clustering 

process. They [34] first extracted the process model having the highest prevalence and then clustered the traces guided 

by this new process model. With an aim to get more fitting process models, the fitness quality of the process model was 

used to guide the trace clustering process [46]. However, focusing only on increasing the fitness quality reduces the 

precision quality of the process models, which consequently increases false positives in process models, i.e., behaviours 

that do not exist in reality. Therefore, it can be argued that the precision dimension is equally significant and should not 

be ignored. Throughout the process mining literature, researchers [22], [47], [48] have repeatedly highlighted the 

significance of a balance between these two model quality measures. Domain knowledge, such as disease occurrence 

patterns, was employed by [49] to guide the trace clustering process. Traces were grouped based on high precision 

between process models and the selected patterns. However, the need for existing patterns limits the generalizability of 

their method. 
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In the context of clustering the traces based on trace features, researchers in [50], [51], [20], [24], and [52] proposed to 

use several distinct event log features to group similar traces. The main idea behind trace-features-based clustering was 

to project the event log into a vector space representation called trace profiles. Each trace profile was a collection of 

features that represent the certain different perspective of the traces. Based on feature profiles, the traces are clustered 

into similar sub-groups. One such example of a feature is the frequency of a sequential relation A > B in the event log. 

In context of feature-based trace clustering, some researchers [50], [51], [20], [24], [52] we successful in enhancing the 

fitness quality of the process models. However, equally vital process perspective, the model complexity was disregarded. 

Secondly, clustering traces based on trace-level features only improves the fitness quality of process models, negatively 

impacting the model precision. Moreover, trace clustering solution that relies on several feature profiles with a range of 

additional sub-features is costly in terms of time performance and does not ensure any reduction in process model 

complexity. Another problem with feature-profile-based methods [20], [50], [51] is that they often ignore feature 

frequencies and employ a frequency-isolated viewpoint. According to [14], the number of activities and their cyclical 

nature are also one of the major contributors to process model complexity. Therefore, frequencies should also be taken 

into account.  

The review of the relevant literature indicates that several of the currently available trace clustering methods effectively 

divide the log into subsets. Even though progress was made in lowering the complexity brought about by trace-level 

variance, the complexity introduced by the fine granularity of the event log received comparatively less attention. On the 

other hand, while evaluating the process behavioural quality of the process models, the focus has remained on fitness 

quality, while the precision dimension has been disregarded. It can be argued that although the process model should 

conform to the reference models; however, for an optimal trace clustering solution, it is essential to strike a balance 

between fitness, precision, and complexity. Without striking a balance between these quality parameters, actionable 

knowledge discovery will not be possible [53], [54]. 

 

3.0. PROPOSED TRACE CLUSTERING FRAMEWORK 

In this section, we present the proposed trace clustering framework, which is illustrated in Fig. 2. The dotted colour lines 

in the framework represent the elements of the existing trace clustering framework starting with feature profile extraction.  

An N number of feature profiles can be extracted based on the availability of additional data attributes in the event log. 

Then based on each feature profile, the event log is clustered using a clustering algorithm which results in M number of 

trace clusters for N number of features profiles. For each cluster M, a process model P is generated, representing a unique 

perspective on the event log. To assess the quality of trace clustering, having several process models in hand, mean 

fitness, mean precision, mean f-score and mean simplicity (complexity assessment) values are calculated.  

In the refined trace clustering framework, we have proposed an event log abstraction strategy that first assesses the extent 

to which certain elements introduce complexity in the process model. Then based on the threshold, abstraction is applied 

to such elements by mapping them with the corresponding high-level counterparts in the event log. In this way, the 

granularity of the existing event log is improved from fine-granular quality to course-granular quality. Such an abstraction 

helps in reducing the complexity of the process models without sacrificing the context of the activity execution.  

However, despite a reduction in complexity, abstraction did not improve the precision quality of the process models. 

Therefore, we proposed an event log decomposition strategy dividing the event log into logical subsets. First, such a 

feature is identified that can logically divide the process into logical sub-processes. Then based on that feature, the event 

log is decomposed into sub-logs.  

After performing abstraction and decomposition, feature profiles are extracted from the event log, and the rest of the 

framework steps are applied. Decomposition of the event logs into logical subsets results in precise process models. 

Moreover, it also enhanced the simplicity of the process models. 

3.1 Abstraction 

Since the fine-granular level of activities in the process models introduces the complexity, the higher the number of 

activities in the process model, the higher the complexity. Therefore, to reduce the complexity of the event log, we 

propose mapping fine-grained activities of the event log against their high-level counterpart within the event log. To 

retain the context of activity execution, the most relevant feature was used as a high-level counterpart. However, mapping  
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Fig. 2. Proposed framework for trace clustering with abstraction and decomposition. 
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all activities to their high-level counterpart will fully remove the activity execution details. Therefore, we employed a 

threshold on the abstraction level. Even though abstraction improves the interpretability of the process models, it is also 

important to consider the trade-off between precision and abstraction. The higher levels of log abstraction can produce 

simpler process models but may sacrifice precision. On the other hand, if event log contains excessive details about 

process execution, the resulting process models become more complex due to the overwhelming number of individual 

actions that need to be incorporated into the process model. Therefore, based on the granularity of the event logs in hand, 

an abstraction threshold must be set in such a way that a balance between the precision and model simplicity is achieved. 

We experimented with several thresholds values and based on the evaluation, the threshold that provided the best balance 

among precision and simplicity was set as 20. This threshold acts as the cut-off value on the mapping between fine-

granular and coarse-granular activity. 

3.2 Logical decomposition 

Despite the reduction in complexity, the abstraction does not help in producing in improving the precision of the process 

models. Therefore, we employ the decomposition of the event log into logical subsets before performing trace clustering. 

Like the abstraction strategy, to retain the context of the activity execution, the decomposition of the event log is also 

guided by the features present inside the event log. Event log features can be leveraged to partition event logs into 

meaningful subsets, which can divide the logs in a way such that each split contains a sub-process comprising of related 

activities. Within the framework of this study, we employed an event log consisting of disease treatment procedures from 

a hospital, encompassing various activities conducted during the treatment processes for different diseases. The 

diagnostic and treatment procedures for each disease involve varying activities. For instance, the activities for treating 

stomach cancer and ovarian cancer differ due to the distinct types of cancer affecting different organs. Additionally, these 

activities may significantly differ on various other factors such as the stage of the disease, the overall health of the patient, 

and individual considerations. As the hospital log’s “disease identifier” feature contained contextual information 

regarding activity execution, this specific feature was employed as the logical splitting criterion, denoted as feature Z in 

log decomposition part of Fig. 2. The number of decomposed partitions of the event logs depends upon the number of 

unique elements of the feature used for decomposition.  

3.3 Extraction of features for clustering  

After the abstraction and decomposition process, for each decomposed event log, several features are extracted from the 

event log, i.e., the trace profiles. For experimental purposes, we used ten feature profiles presented in Table II. Each 

feature profile is an x, y vector of several sub-features representing a vector space representation of trace against that 

specific feature profile.  

Table II. Feature profiles used for clustering. 

Occurrence 
Feature 

Specificity 
Feature profiles Description 

Frequency-

based Universal 

Activity Trace-level frequency of activities 

Activity duration Trace-level duration of activities  

Activity transition Trace-Level frequency of transition between activity x and y  

Case duration Overall duration of each trace  

Department Trace level frequency of department  

Department 

transition 

Trace-Level frequency of transition between department x and 

y  

Resource Frequency of human resource involved in activity execution 

Real values 

Variant Unique trace variant  

Log specific 
Age Age of patients  

Patient Type Type of patient (emergency or normal) 
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An excerpt of an example feature profile is presented in Table III which is a transition profile. A transition refers to a 

kind of process execution behaviour observed in the event log which represents a certain sequence of activities performed 

towards execution of the process. In a sample trace <A, B, C> of process execution instance it can be observed that in 

total three activities were performed towards execution of the process where process started with activity A and ended 

with activity C. Moreover, two process execution behaviours can be observed in this trace A > B and B > C. The transition 

A > B implies a behaviour A is followed by B was found in the trace and transition B > C shows that another behaviour 

B is followed by C was also found in the event log. However, since an event log contains several executions of process 

instances i.e., trace, therefore there may be several other traces that contain such transitions. Moreover, other traces may 

also contain several other such features which homogenizes or distinguishes it from other traces. This triggers the need 

of a feature profile matrix where each row in feature profile matrix represents the frequencies of a particular feature (in 

column) against each trace. The traces are uniquely identified by a Case ID. Consider transition feature B > C for trace 

number 7 in Table III, which indicates that for trace number 7, the transition feature B to C exists with a frequency of 20, 

which implies that in the event log, activity B was followed by activity C for a total of twenty times.  

Activity profile is yet another feature profile which is used to distinguish the traces based on the activities that contain. 

While other approaches do ignore the frequencies, we consider the frequencies as an essential parameter for clustering, 

model complexity, and model evaluation. Merely considering the binary occurrence of the trace features does not 

represent the true impact of that feature on the trace. For example, in cased of activity profile, two sample traces, 

<ABBBBCCCDDEEE> and <ABCDE>, are considered equal in existing trace clustering approaches because both traces 

executed exactly the same kind of activities i.e., A, B, C, D and E. However, it can be observed that in the context of 

frequencies, both the traces differ from each other. Therefore, ignoring frequencies discards the context in which the 

activity was executed. 

The usage of frequencies has significance in several other contexts too. Considering the real-life dataset of a patient 

treatment process in a hospital (also used in this study) where patient A’s treatment process contains five activities. On 

the other hand, despite the same activities followed for patient B, some of the activities are repeated more than once, such 

as reinvestigating the diagnostics tests. Ignoring such frequencies will result in clustering two patients together, which is 

incorrect and results in a loss of activity execution context where patient B’s treatment process was more rigorous than 

patient A. It is evident that feature frequencies do have an impact on clustering results. Therefore, considering this 

rationale, we do consider feature frequencies in trace profiles instead of binary decisions on the presence of a certain 

feature in a trace.  

Table III. An excerpt of a feature profile 

Case ID A > B B > C A > D …. ABC > XYZ 

0 1 3 2 - 2 

1 0 16 8 - 1 

2 0 0 0 - 0 

3 0 0 0 - 0 

4 0 8 1 - 3 

5 0 1 0 - 0 

6 0 2 0 - 1 

7 1 20 6 - 2 

- - - - - - 

12567 0 5 0 - 2 

12568 2 50 3 - 26 

Since the features vary from log to log, few of these features are specific to the dataset in hand, while others are prevalent 

to every process mining dataset. Table II shows all the features we used for trace clustering. These features were extracted 

from event log with the help of Microsoft Excel. 

3.4 Trace clustering  

In this stage, the traces are clustered by the clustering algorithm based on feature profiles. We used ten feature profiles 

that were extracted in the previous step to form trace clusters. These feature profiles are listed in Table II. The ‘Activity 

profile’ is combination of activity feature matrix which represents the frequencies of certain activities appearing in the 

traces. Using activity profile, the traces can be clustered based on the frequencies of activities. Similarly, the feature 

matrix ‘Activity duration profile’ and ‘case duration profile’ are combination of the features that represent the time taken 
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to complete each activity within a trace and overall time taken by each case respectively. These features profiles help 

form, clusters based on temporal properties of the traces. The ‘activity transition profile’ is combination of features that 

contain the frequencies of directly follows relation between the pair of activities in the event log. Such a relation helps in 

clustering event log based on the activity sequences that contain. The ‘department profile’ represents the frequency of 

involvement of certain department with a trace which can be used to cluster the traces. Similarly, the ‘department 

transition’ profile contains the features representation of secession frequency between any two departments. The resource 

in process mining traditionally refers to human resource or machine resource involved in execution of certain activity of 

the process. The resource represents the activity handover and social network of resources towards execution of certain 

process. Therefore ‘resource profile’ is combination of feature frequencies of each resource involved in the execution of 

certain frequencies.  

Similar to the ‘transition profile’ which represents the features related to sequential appearance of the two activities in 

the traces, the ‘variant profile’ is used is used to distinguish the traces based on the sequences of activities they executed. 

Compared with transitions profile, however, there is no limit on number of activities appearing in the sequence. Based 

on the sequence, each variant is assigned a unique identifier and the frequency of such identifier is used as feature profile. 

Apart from universal event log features we also included some log specific features profiles such a ‘Age profile’ and 

‘Patient type profile’. The Age profile is used to cluster the traces based on the age of the patients involved. On the other 

hand, the ‘Patient type profile’ is used to categorize the patients based on severity of disease such as emergency patient 

or normal patient as the attention procedures and sequence of activities executed to treat patients with emergency differ 

than those who require normal priority. Principally, any clustering algorithm can be used in this stage to cluster the event 

log. However, since K-Means can scale well to large datasets and feature frequencies have been used in the feature 

profiles, we used K-Means to cluster the traces. The maximum number of clusters can be decided by using silhouette 

coefficients and elbow method.  

3.5 Process Discovery  

Once the clustering process is complete, a process model is discovered for each cluster generated in trace clustering step. 

The selection of the process discovery algorithm is an important parameter here. Principally, any process discovery 

algorithm can be used such as Alpha miner, Heuristic miner, Fuzzy miner, or the Inductive miner. However, the 

limitations of the process discovery algorithms should be kept in mind when performing process discovery.  The alpha 

miner cannot discover short loops; therefore, the models will not be accurate. Heuristic miner used a behaviour filtration 

threshold; therefore, the resulting model will always leave out infrequent behaviour which leads to inaccurate and 

complex process models. An important property of process models is soundness which ensures that output model 

provides some guarantees such as it must be complete and able be capture all possible ways in which the process can be 

executed. This helps to ensure that the model is accurate and reliable. Both the alpha miner and heuristic miner produce 

unsound process models which results in inaccurate representation of reality. Fuzzy miner also uses a similar behaviour 

filtration approach on based on activity and relation frequencies however it lacks formal process semantics, i.e., no 

difference can be made between a choice and a join or split, thereby removing the capability to evaluate the behavioural 

quality of the process models. Another important point to consider is that in the context of computational expensiveness, 

process discovery is considered a computationally expensive task in process mining which is further escalated due to fine 

granularity of the event log. A high number of places and transitions in source event log creates a performance overhead 

due to an increase in calculations of relations among activities. However, due to log decomposition, abstraction and 

clustering, the number of activities per model thereby downscaling the number of paths required to model. In this way, 

abstraction and decomposition do implicitly resolve the issue of computational expensiveness of the mining algorithm. 

Compared to all three other process discovery algorithms, the Inductive miner does not leave out infrequent behaviour 

and always produces sound process models. Secondly, since the inductive miner produces petrinet modelling notation, 

which enables the evaluation of the discovered process models’ quality.  

Compared with alternate process discovery algorithms, having the properties of accuracy, soundness and enabling of 

model quality assessment makes inductive miner a suitable candidate for process discovery. Therefore, we selected the 

Inductive miner as the model discovery algorithm.  

3.6 Evaluating the behavioural and structural quality  

In this stage, the behavioural and structural quality of the resulting process models are measured. We used well-known 

fitness, precision, and f-score metrics for the evaluation of the behavioural quality of the process models [14]. Moreover, 

for assessment of the structural complexity and simplicity of the resulting process models, inverse arc degree [14] was 
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used. The inverse arc degree is the average number of input and output arcs connected to each transition/ place of a 

process model. The more connections in the process model, the more complex a model becomes. To provide a 

comprehensive understanding of model complexity reduction, we incorporated two supplementary metrics for evaluating 

structural quality: model density and places count. Model density refers to the proportion of total arcs in the model 

compared to the maximum possible number of arcs [17], [38]. A higher density signifies a more intricate process model. 

Moreover, places count indicates how many individual components make up the final process model [34]. Increased 

number of nodes represent an increase complexity of process models. A greater number of nodes indicates increased 

complexity. 

3.7 Selection of optimal clustering solution  

Based on the evaluation results the optimal settings for trace clustering are selected. Optimal settings refer to the situation 

where trace clustering results in highest possible fitness, precision, and simplicity of process models, and the overall time 

taken for trace clustering and model evaluation is reduced. Such an optimal setting is deemed as recommended trace 

clustering solution. 

 

4.0. EXPERIMENTAL SETUP  

We used the following setup for the evaluation and experimentation of the proposed framework:  

In the experiments, we compared the results of our proposed framework against the approaches of Jablonski et al. and 

Faizan et al. who performs trace clustering with any abstraction and decomposition.  

As input, we used publicly available real-life event logs of the patient treatment process of a Dutch Academic Hospital 

[55]. The selection of this dataset was motivated by its frequent usage in process mining to evaluate process complexity 

management techniques. The average number of events per trace (131) in our source event log already indicated a high 

level of fine granularity of the event log, which translates to the complexity of the process models. Since the event log is 

highly granular, in the first phase, we applied abstraction over the event log where low-level high-level activities are 

remodelled with high-level counterpart. However merely abstracting all the activities produces highly imprecise process 

models. Therefore, a threshold value is employed which is guided by precision and model complexity. This threshold 

value is tested against multiple abstraction thresholds in order to achieve a balance between the precision and model 

complexity.  

To further improve model precision, in second phase, log decomposition is applied over abstracted event logs which is 

guided by event log features. We used “disease identifier” for decomposition of the event log which resulted in ten 

decomposed partitions of the event log each containing only activities relevant to specific disease. Subsequently in phase 

3, feature extraction was employed over each abstracted and decomposed the event log subset. Ten feature profiles were 

extracted with each having matrix of features related to different aspects of the event log. The extracted features and their 

description are detailed in Table II. 

In phase 4, the traces clustering step was executed for each log subset using clustering algorithm. For each cluster 

produced by performing trace clustering, a process model is discovered. For process discovery, the inductive miner 

algorithm was used which produced a petri net model.  Then for each model discovered, the behavioural quality of 

process models is assessed using well known fitness, precision, and f-score metrices. Subsequently structural quality of 

each discovered process model is evaluated using inverse arc metric, model density and places count. An exhaustive 

evaluation was carried out until clustering, model discovery and evaluation of each sublog was achieved. Trace clustering 

produced several process models, therefore the average values of behavioural and structural quality of process models 

were used for evaluation of process models. Since model discovery is computationally expensive task, therefore the 

number of minutes taken to discover final models was used as performance indicator. Finally, results were compared 

against two baselines using structural complexity measure, behavioural complexity measures and time performance.   

We implemented our proposed framework using PM4Py library [56] which is implemented in Python language. In terms 

of hardware and operating system configuration, we evaluated our solution on Intel(R) Core i7-3.40GHz CPU with 12 

GB of RAM and Windows 10 Pro (64-bit) operating system. 

 

5.0. RESULTS  

In this section, we present the results obtained by application of the proposed framework for trace clustering. We used 

two baseline trace clustering techniques Jablonski et al. [20] and Faizan et al. [24] for the experimental evaluation of our 
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approach and refer to them as baseline 1 and baseline 2 throughout this section.  

The experimental evaluation results, as presented in Fig. 3, reveal that in the context of behavioural quality of the process 

models, our proposed framework increases the precision and f-score of the resulting process models. We obtained 38% 

and 10% improvement in the precision quality of the resulting process models compared with the two baseline 

approaches, respectively. Moreover, compared with the two baseline approaches, 40% and 37% percent improvement in 

the f-score was achieved. Although compared with baseline 2, an improvement in fitness, precision, and f-score of the 

process models can be observed, however, our approach slightly under-performs in terms of fitness quality against 

baseline 1. 

In terms of the complexity of the process models, an increase in simplicity of the process model can be observed as 

visualized in Fig. 4. Using the proposed framework, we were able to reduce the complexity of the process models by 

23% and 38%, respectively in terms of inverse arc metric, as compared with the two baseline approaches. In order to 
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present a more complete picture of model complexity reduction, we used two additional structural quality assessment 

metrics i.e., model density and places count. The density of a model is defined as the ratio between the total number of 

arcs in the model and the maximum possible number of arcs. The greater the density, the more complex the model of the 

process. On the other hand, the places count represents number of nodes in the resulting process model. The greater 

number the nodes in process model, mode complicated it is. Both of these metrices are negatively correlated with 

understandability of the process models. Therefore, the lower values of these metrices results in more comprehendible 

process models [14]. In terms of density, our proposed framework produces 76 and 81 percent less simpler models 

compared with two baselines. Moreover, complexity reduction in terms of places count, we have achieved up to 49 

percent of improvement compared with baselines.  

A third perspective of the evaluation was the time performance, where the results of our proposed framework were 

compared against the baseline in terms of overall time taken for trace clustering, model discovery, and model evaluation. 

Time performance in process mining refers to the ability of the process mining tool to quickly and efficiently analyse 

large amounts of event data and generate process models.  

The comparison of time performance against the baseline is shown in Fig. 5. It is evident that the application of our trace 

clustering framework results in a significant 89 and 85 percent improvement in the time performance of trace clustering 

and model discovery process against both the baseline works. Despite adding further elements to the existing trace 

clustering framework, our approach performs much more efficiently than the existing trace clustering framework.  

Overall, the experimental results indicate that the proposed farmwork has the potential to enhance both behavioural and 

structural quality of the process models in addition to enhancing the time performance. In the following section, we will 

further discuss the significance of these results. 

6.0. DISCUSSION 

The discussion section aims to provide a comprehensive analysis and interpretation of the experimental results obtained 

from the proposed framework for managing complexity in process mining. Furthermore, we will discuss the limitations 

of the proposed framework. The discussion will also explore the practical implications of the findings, highlighting their 

contribution to the field of process mining and operational processes.  

The results of the proposed trace clustering framework show that it improves several key areas of the resulting process 

models. The enhanced trace clustering framework increases the fitness, precision, and f-score of the process models, 

indicating a higher quality of the models. At the same time, it leads to a significant increase in the simplicity of the 
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process models, making them easier to understand and interpret. However, the results also indicate slight 

underperformance in terms of fitness quality, although the increase in precision and simplicity makes up for this in many 

cases. Comparing our approach with two baseline trace clustering techniques reveals that the proposed framework results 

in less complex process models, which are more efficient and less prone to errors. Another critical aspect of the results 

is the significant improvement in trace clustering and model discovery time performance.  

The experimental evaluation results of the proposed framework have significant implications for the field of process 

mining. Firstly, the improvement in behavioural quality, as demonstrated by the increase in precision and f-score, implies 

that the process models generated using the proposed framework are of higher quality than those generated using the 

baseline approaches. This is an important consideration, as high-quality process models are essential for making informed 

decisions about process improvement. 

The reduction in complexity of the process models also has significant implications. With the reduction in complexity, 

the process models become easier to understand and interpret, making them more accessible to the stakeholders involved 

in the process. This improved accessibility can lead to greater adoption of process improvement initiatives, as 

stakeholders are more likely to understand and support changes when they have a clear and concise understanding of the 

process. 

The slightly reduced fitness in the proposed framework compared to baseline 1 implies that the accuracy or the degree 

to which the process model fits the actual process may have decreased. However, it is important to note that the proposed 

framework still showed improvement in fitness compared to baseline 2. The slight underperformance observed in terms 

of fitness quality should be considered in the context of the improvements achieved in precision and f-score. Despite a 

10% decrease in fitness relative to baseline 1, substantial increases of up to38% in precision and around 40% in f-score 

can be observed. The precision of the process models is an indicator of their reliability because it represents the percentage 

of correctly detected process instances. Therefore, a 38 percent improvement in precision implies a substantial reduction 

in false positives and better alignment with the actual behaviour of the process. It is widely acknowledged by researchers 

[57]–[59] that increase in model precision results in a drop of fitness quality. Therefore, in such cases, f-score is used as 

an alternative model quality indicator which represents a harmonic-mean of precision and fitness quality of process 

models [14], [17]. Our results already indicate a 40 percent improvement in the f-score, which highlights the overall 

effectiveness of the proposed framework in capturing the relevant behaviours in the process. Therefore, improvements 

in f-score compensate for this trade-off. Additionally, the gains in simplicity and the reduction in model complexity 

further contribute to the overall comprehensibility of the resulting process models. The combination of these factors 

suggests that the observed 10 percent reduction of fitness is negligible. 

The improvement in time performance, as demonstrated by the reduction in the overall time taken for trace clustering 

and model discovery, also has important implications. In practical applications, it is essential to quickly and efficiently 

analyse large amounts of event data, and the evaluation results indicate that the proposed framework is capable of doing 

so. The faster processing against the two baseline approaches can be a significant advantage in many cases, especially in 

time-sensitive processes where efficient and faster analysis of processes is desired. This efficiency improvement makes 

the proposed framework a valuable addition to the field of process mining, as it addresses the challenge of handling large 

amounts of data in a timely manner. Finally, the improvement in time performance can be seen as an indicator of the 

scalability of our approach. This is particularly important in trace clustering, where multiple models must be discovered 

and evaluated, making time efficiency gains crucial. 

To further enhance the impact of our proposed framework in the field of process mining, there are several future research 

avenues. The impact of different feature profiles on trace clustering and model evaluation performance can be studied to 

reduce the number of feature profiles and improve the generalizability of the framework. Moreover, the framework can 

be applied in different domains, such as production, finance, and manufacturing, to see if it generalizes well and produces 

accurate and efficient process models in these domains. Additionally, future research can also incorporate human-centric 

perspectives into proposed framework to capture the impact of incorporating stockholders’ feedback in the process 

modelling to allow a better alignment between the automated analysis and the human aspects of information systems. 

Finally, usage of behavioural features raises ethical and privacy concerns where users can be identified based on the 

behavioural patterns they follow. The proposed framework can be integrated with methods to ensure data privacy and 

anonymization to ensure protection of individuals’ privacy rights and promote trust and ethical practice in the field of 

process mining and information systems. 
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In conclusion, the experimental evaluation results have important implications for the field of process mining. The 

improvements in behavioural quality, complexity, and time performance demonstrate that the proposed framework is a 

valuable addition to the field, as it addresses common challenges faced in analysing event data and generating process 

models. These results can be leveraged by organizations looking to improve their processes, as it is evident that the 

proposed framework can lead to high-quality, accessible, and efficient process models. 

 

7.0. CONCLUSION 

In this paper, we analysed existing trace clustering framework for dealing with complexity issues in process mining. It 

was found that existing frameworks work well when the event log has trace-level variation. However, when a fine-

granular event log is faced with, the trace clustering alone does not help much in reducing the complexity of the process 

models and produces less precise process models. In line with these limitations, we presented an improved trace clustering 

framework with an integration of event log abstraction and decomposition to realize more straightforward, precise, and 

efficient process models. Evaluation of the proposed framework was performed on a real-world event log dataset. A 

comparison with existing trace clustering approaches reveals that our proposed framework results in comparatively less 

complex and more precise process models. Moreover, trace clustering using our proposed framework is much more 

efficient than the existing framework in the context of time performance. The improved time performance in trace 

clustering has several implications for the process mining field, especially in the context of mining complex and 

unstructured processes where timely detection of bottlenecks are crucial. Moreover, an increase in time performance also 

indicates the scalability of the proposed framework. An interesting research avenue for our future work can be 

investigating the impact of different feature profiles on trace clustering and model evaluation performance. Such an 

evaluation will help in reducing number of feature profiles and pave the way for further improving the time performance 

and the generalizability of proposed framework.  
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